Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Приборы и датчики для измерения температуры1.doc
Скачиваний:
5
Добавлен:
15.11.2019
Размер:
504.83 Кб
Скачать

Термометры сопротивления

Измерение температур с помощью термометров сопротивления основано на изменении электрического сопротивления проводника с изменением температуры. Зная зависимость сопротивления от температуры, можно по его изменению определить температуру контролируемой среды. Зная зависимость R=f(t), можно по электрическому сопротивлению тела найти его температуру. Таким образом, термопреобразователь, в отличии от термометров расширения, является только датчиком. Комплект прибора состоит из термометра сопротивления – тепловоспринимающего элемента (первичный прибор) и электроизмерительного прибора, измеряющего электрическое сопротивление термометра (вторичный прибор) в градусах.

Термометры сопротивления лишены ряда недостатков, присущих термометрам расширения и манометрическим термометрам. У них более высокая точность, имеется возможность передачи показаний на большие расстояния и централизации контроля нескольких термометров к одному измерительному прибору; они менее инерционны. Общим недостатком этих термометров является: необходимость в постороннем источнике тока; невозможность точных измерений

Для измерения электрического сопротивления в настоящее время в промышленности применяют почти исключительно автоматические уравновешенные мосты.

С помощью термометров сопротивления можно измерять температуру в интервале от –250 до 1000C с высокой степенью точности, для температур выше 500C практичнее пользоваться термопарами.

Материал, применяемый для чувствительного элемента термометров сопротивления, должен удовлетворять ряду требований. Он должен быть химически инертным и не изменять своих физических свойств в интервале рабочих температур термометра. Зависимость изменения сопротивления термометра от изменения температуры должна быть близка к линейной. Температурный коэффициент термометра сопротивления должен быть достаточно большим. Материалы, применяемы для чувствительных элементов термометров сопротивления, должны позволять изготавливать термометры в больших количествах с однотипными характеристиками. Приведенным выше основным требованиям, предъявляемым к материалам чувствительных элементов термометров сопротивления, удовлетворяет только платина и медь.

Температурный коэффициент сопротивления платины зависит от ее чистоты и тем больше, чем меньше содержится примесей в платине. Чистоту платины принято характеризовать отношением

где - сопротивление при 0C,

- сопротивление при температуре кипения воды,

- сопротивление при температуре кипения серы.

Для изготовления термометров сопротивления по ГОСТ 6651-59 применяется чистая платина марки «Экстра» с отношением

платина применяется в виде проволоки диаметров от 0,05 до 0,07мм или ленты сечением от 0,002 до 0,005 мм2.

Промышленные платиновые термометры сопротивления изготавливаются на интервалы температуры от –200 до +650C. Измерение электрического сопротивления изменением температуры подчиняется зависимости:

а) для интервала температур от –200 до 0C

;

б) для интервала температур от 0 до +650C.

;

где - сопротивление термометра при температуре t;

- сопротивление термометра при температуре 0C;

A, B, C – постоянные коэффициенты, значения которых определяются градируировкой при температурах: кипения кислорода (-182,97C), кипения воды (100C) и кипения серы (444,6С).

Для чистой платины марки «Экстра»

;

;

;

медные термометры сопротивления обычно изготавливают из проволоки диаметром 0,1 мм с эмалевой или шелковой изоляцией. Медные термометры сопротивления изготавливаются на интервалы температур от –50 до +180C. Измерение электрического сопротивления медного термометра с изменением температуры имеет линейную зависимость и выражается уравнением

,

где  - температурный коэффициент сопротивления меди, равный .

Медные термометры сопротивления подвержены окислению во влажной атмосфере и агрессивных средах, особенно при повышенной температуре. Поэтому следует избегать применения медных термометров в указанных условиях или же применять защиту чувствительного элемента от воздействия агрессивных сред.

Основные параметры платиновых термометров сопротивления ТСП и медных термометров сопротивления ТСМ по ГОСТ 6651-59 приведены в табл. 2,

Таблица 2

Типы термометров сопротивления

Номинально сопротивление при 0С , Ом

Обозначение градуировки

Диапазон температур длительного применения, С

от

до

ТСП

10

ГР20

0

+650



46

ГР21

-200

+500



100

ГР22

-200

+500

ТСМ

53

ГР23

-50

+180



100

ГР24

-50

+180

Чувствительный элемент термометров сопротивления бифилярно наматывается на специальный каркас в виде спирали. Материал каркаса термометра должен обладать хорошими изоляционными качествами, достаточной механической прочностью, жароустойчивостью и не должен оказывать вредного влияния на материал чувствительного элемента термометра. Этим требованиям в известной степени отвечают слюда, плавленный кварц и фарфор. Слюдяные каркасы применяются при температуре до +500С, так как при более высоких температурах из слюды выделяется кристаллизационная вода, вследствие чего слюда разбухает, расщепляется и теряет свои первоначальные свойства. Слюдяные каркасы изготовляются в виде креста или пластинки, снабженных зубчатой нарезкой на краях, в которой укладывается спираль чувствительного элемента термометра сопротивления. В медных термометрах сопротивления, предназначаемых для измерения температур ниже 100С, в качестве материала каркаса применяются различные пластмассы.

Соединение чувствительного элемента с зажимами головки термометра осуществляется проводами, материал которых не должен оказывать вредного влияния на материал чувствительного элемента, должен быть химически стойким и не должен развивать значительной Э.Д.С. в паре с проволокой чувствительного элемента. В медных термометрах применяются медные выводы, а в платиновых используются выводы из серебряной проволоки. В платиновых термометрах сопротивления, предназначаемых для измерений с повышенной точностью, выводы изготовляются из платины или золота.

Чтобы обеспечить нормальную эксплуатацию термометров сопротивления, следует придерживаться несколько основных правил:

1. термометры выбирать так, чтобы диапазон его измерений как можно более соответствовал пределам измерения температуры измеряемой среды;

2. при выборе длины термометра учитывать размеры камеры (трубопровода) и место его установки. При монтажной длине более 500мм и установке в горизонтальном или наклонном положении термометр должен быть дополнительно закреплен во избежание прогиба и вибраций;

3. при выборе глубины погружения термометра учитывая длину чувствительного элемента (активной части), которая для ТСП составляет 30-120, для ТСМ – около 60мм;

4. при выборе защитной арматуры учитывать свойства измеряемой среды, ее давление и скорость;

5. перед монтажом термометра, а также в процессе его эксплуатации (при исследованиях – перед каждым опытом и при максимальных температурах) проверять целостность чувствительных элементов и сопротивление изоляции с помощью мегомметра с номинальным напряжением 500В. Испытательное напряжение прикладывается между зажимами термометра и корпусом, а для термометров с двумя чувствительными элементами также и между отдельными электрическими цепями. При такой проверке сопротивление электрический изоляции должно быть не меньше указанных в таблице 4. Если в результате проверки выявлено, что чувствительные элементы не нарушены, а сопротивление изоляции не меньше допустимого, то следует термометр просушить, после чего снова замерить сопротивление;

Таблица 4

Минимально допустимое электрическое сопротивление изоляция для термометров сопротивления

Измеряемая температура, C

Относительная влажность окружающего воздуха, %

Сопротивление изоляции, МОм

15-25

15-25

300

500

500

80

92-98

80

80

80

20

2

2

1

0,5

Для брызго- и водозащищенных термометров.

Температура верхнего предела применения термометра.

6. к одноточечному вторичному прибору подключается несколько термометров сопротивления только через переключатель типа ПМТ, ПД.

Кроме указанных параметров термометры сопротивления также характеризуются показателем тепловой инерции. Посмотрим влияние этого параметра на выбор и конструирование контактных приборов. При внесении термометра с начальной температурой в среду с температурой его показания будут изменяться со временем от минимального в начальный период времени (=0) до максимального значения при =. При этом предположим, что термоприемник не оказывает какого-либо влияния на =const. В этом случае из условий теплообмена можно записать

;

,

где с – полная теплоемкость теплоприемника;  - коэффициент теплообмена;

S – площадь поверхности, соприкасающейся с окружающей средой;

Ф=c/S – тепловой фактор.

Если принять , то

Следовательно, величина численно равна интервалу времени, по истечению которого при внесении термометра в среду с постоянной температурой разность температуры среды и любой точки чувствительного элемента стала равна 0,37 от первоначальной разности. Эту величину обычно называют показателем тепловой инерции термометра. Отметим, что он характеризует темпы и скорость теплообмена не только термометров сопротивления, но и любого контактного термоприемника со средой.

Из выражения

видно, что величина зависит от теплового фактора Ф и коэффициента теплообмена . Изменение формы теплоприемника (шар, цилиндр, спираль с ребрами) при неизменном его объеме удается изменить в несколько раз. Однако, при увеличении линейных размеров чувствительного элемента:

  1. изменяет условия измерений в пространстве;

  2. может нарушить условие: равенство температур во всех точках термоприемника.

ГОСТ 6651-78 устанавливает для термометров сопротивления следующие максимальные показатели термической инерции, с: приборы с большой инерционностью (БИ)-240; средней (СИ)-80; малоинерционные – 9. эти значения определены при коэффициенте теплообмена, практически равным бесконечности. Однако  изменяется в весьма широких пределах (воздух в помещении – высокоскоростной поток жидкости), поэтому в реальных условиях показатель инерции будет выше, чем указано в паспорте прибора.