Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
math1.doc
Скачиваний:
8
Добавлен:
16.11.2019
Размер:
391.68 Кб
Скачать

Раздел 4 меры центральной тенденции

Центральная тенденция – то количественное (численное) значение признака, к которому тяготеет переменная величина. Поскольку понятие «тяготеет» несколько произвольно и с математической точки зрения не вполне корректно, имеет смысл рассмотреть различные меры центральной тенденции более подробно.

В психологических исследованиях в качестве мер центральной тенденции чаще всего используются мода, медиана и среднее арифметическое значение. Значительно реже используются такие меры как среднее геометрическое, среднее гармоническое, обратное среднее гармоническое значение и др.

4. 1. Мода

Мода (Mo) – наиболее часто встречающееся значение признака. В предыдущем примере (ранжированный ряд уровня личностной тревожности) мы имеем две моды: Mo1 = 36 и Mo2 = 45 (эти значения переменной встречаются трижды, в то время как все остальные – по 1 или 2 раза). В зависимости от того, сколько значений признака удовлетворяют определению моды, различают мономодальные (имеющие одну моду), бимодальные (имеющие две моды) и полимодальные распределения (имеют более чем две моды), а также распределения, не имеющие моды (все значения признака встречаются примерно с одинаковой частотой). В бимодальном и полимодальном распределениях, в свою очередь, можно определить наибольшую и наименьшую моды.

В тех случаях, когда анализируются таблицы сгруппированных частот исследуемого признака, как правило, определяется модальный класс, т. е. тот класс распределения, в который попадает наибольшее количество частот (значений признака). Так, для иллюстрации зачерненный столбец на рис. 3.1, а соответствует модальному классу.

Мода не является достаточно строгой мерой центральной тенденции, поскольку она не учитывает характера распределения переменных, а значит может использоваться лишь в предварительных выводах и прогнозах. Кроме того, необходимо использовать моду только для больших объемов выборок, поскольку для малых она недостаточно информативна.

4. 2. Медиана

Медиана (Md) – значение, которое делит упорядоченное множество данных (ранжированный ряд) пополам так, что одна половина значений оказывается больше, а другая – меньше медианы. Медиана – среднее значение ранжированного ряда. Если число значений нечетное, то медиана соответствует среднему члену ряда, если четное, то медиана есть среднее между двумя центральными значениями (в предыдущем примере Md = 41,5).

Медиана соответствует 50-му процентилю, 5-му децилю или 2-му квартилю в группе данных, т. е. Md = P50 = D5 = Q2.

Мода и медиана не учитывают разброса данных, и переменные, лежащие в стороне от центра, не влияют на их величину.

4. 3. Среднее арифметическое значение

Среднее арифметическое значение, или просто среднее ( ), равно сумме переменных, деленной на их число.

Для несгруппированных переменных среднее арифметическое вычисляется по формуле:

(4.1)

Для сгруппированных переменных можно воспользоваться другой формулой – среднее будет соответствовать сумме произведений средних значений каждого класса и частоты встречаемости значения признака в данном классе:

(4.2)

Среднее арифметическое может использоваться и для тех признаков, для которых не найден способ количественного измерения (шкала порядка). Для этого в качестве xi используются ранговые числа, а среднее принято называть непараметрическим средним.

Взвешенное среднее арифметическое используется в тех случаях, когда разные составляющие имеют разный «удельный вес» в формировании общей совокупности:

(4.3)

или: (4.4)

где n – объем выборки, N – число классов.

Пример

Средний балл аттестата учащихся выпускных классов одной из школ соответствует следующим значениям: 11-а – 4,2; 11-б – 4,0 и 11-в – 3,8. Численность этих классов составляет: 11-а – 25 человек, 11-б – 28 и 11-в – 32 человека. В данном случае средний балл аттестата по всем выпускным классам составит (4,2 × 25 + 4,0 × 28 + 3,8 × 32) : (25 + 28 + 32) = 3,98.

Среднее принято округлять с точностью до знака, следующего за последним знаком xi (увеличение точности на порядок).

Свойства среднего

1. Сумма всех отклонений от среднего значения равна нулю:

Доказательство:

поскольку `

2. Если константу с прибавить к каждому значению, то среднее превратится в

Доказательство:

3. Если каждое значение множества со средним умножить на константу c, то среднее станет равным

Доказательство:

4. Сумма квадратов отклонений значений от их среднего арифметического меньше суммы квадратов отклонений от любой другой точки: (при условии, что b ¹`x ).

Доказательство: где

Примем Тогда:

поскольку

Так как c2 > 0, то:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]