Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Билет14.docx
Скачиваний:
3
Добавлен:
23.11.2019
Размер:
49.3 Кб
Скачать

2. Атомно-абсорбционная спектрометрия и области ее применения.

Элементный анализ — качественное обнаружение и количественное определение содержания элементов и элементного состава веществ, материалов и различных объектов. Это могут быть жидкости, твердые материалы, газы и воздух. Элементный анализ позволяет ответить на вопрос — из каких атомов (элементов) состоит анализируемое вещество.

Элементный анализ является одной из важнейших задач в любой научно-исследовательской лаборатории, институте, университете. Элементный состав вещества необходимо знать на любом производстве с целью контроля используемого сырья, контроле производства, а также готовой продукции. 

Атомно-абсорбционная спектрометрия (ААС) - метод элементного анализа, основанный на измерении селективного поглощения оптического излучения определенной длины волны нейтральными атомами определяемого элемента. Это один из самых точных и производительных физико-химических методов анализа жидких проб различного происхождения.

Атомно-абсорбционные спектрометры (ААС) - приборы, предназначенные для проведения количественного элементного анализа (до 70 элементов) по атомным спектрам поглощения, в первую очередь для определения содержания металлов в растворах их солей: в природных и сточных водах, в растворах-минерализатах консистентных продуктов, технологических и прочих растворах.

Основные области применения атомно-абсорбционных спектрометров (ААС) — контроль объектов окружающей среды (воды, воздуха, почв), анализ пищевых продуктов и сырья для их изготовления, медицина, геология, металлургия, химическая промышленность, научные исследования.

Количественный элементный анализ основан на измерении физических свойств изучаемых материалов в зависимости от содержания определяемого элемента: интенсивности характерных спектральных линий, значения ядерно-физических или электрохимических характеристик и т. п. 

  1. Жидкостная хроматография.

Жидкостная хроматография - вид хроматографии, в к-рой подвижной фазой (элюентом) служит жидкость. Неподвижной фазой м. б. твердый сорбент, твердый носитель с нанесенной на его пов-сть жидкостью или гель. Различают колоночную жидкостнуюхроматографию, в к-рой через колонку, заполненную неподвижной фазой, пропускают порцию разделяемой смеси в-в в потоке элюента (под давлением или под действием силы тяжести), и тонкослойную жидкостную хроматографию в к-рой элюент перемещается под действием капиллярных сил по плоскому слою сорбента, нанесенного на стеклянную пластинку или металлич. фольгу, вдоль пористой полимерной пленки, по пов-сти цилиндрич. кварцевой или керамич. палочки, по полоске хроматографич. бумаги (см. Хроматография на бумаге). Разработан также метод тонкослойной жидкостной хроматографии под давлением (элюент прокачивают через слой сорбента, зажатого между пластинами). Жидкостная хроматография применяется как аналитическая и препаративная (см. Хроматография препаративная). В высокоэффективной жидкостной хроматографии (ВЭЖХ) используют колонки диаметром до 5 мм, плотно упакованные сорбентом с частицами малого размера (3-10 мкм); давление для прокачивания элюента до 3.107 Па (ее называют также хроматографией высокого давления). Варианты ВЭЖХ -микроколоночнаяхроматография на наполненных колонках малого диаметра и капиллярная хроматография на полых и наполненных сорбентом капиллярных колонках. К жидкостной хроматографии обычно относят также гидродинамич. хроматографию, где неподвижная фаза отсутствует. В этом случае используют тот факт, что скорость потока элюента максимальна в центре полого капилляра и минимальна у его стенок, а разделяемые компоненты распределяются между движущимися с разной скоростью слоями элюента в соответствии со своими размерами или под влиянием наложенного в поперечном направлении внеш. силового поля (центробежного, электрического, магнитного). 

Применение: контроль качества пищевых продуктов, экологический мониторинг, анализ технологических растворов, лекарства и методы медицинской диагностики.

Основные виды. По механизму удерживания разделяемых в-в неподвижной фазой жидкостная хроматография делится на осадочную хроматографию, адсорбционную, распределительную, ионообменную хроматографию (в т. ч. ионную хроматографию), ион-парную,лигандообменную хроматографию, эксклюзионную хроматографию (ситовую) и аффинную хроматографию (биоспецифическую).

Адсорбционная жидкостная хроматография в зависимости от относит. полярности сорбента и элюента подразделяется на нормально-фазную и обращенно-фазную. В первом случае адсорбция в-в происходит на полярном сорбенте [напр., силикагеле, содержащем гидроксильные (силанольные) группы] из неполярного элюента благодаря донорно-акцепторному взаимод. или образованиюводородных связей. Во втором - на пов-сти гидрофобизир. сорбента из полярного элюента благодаря дисперсионному (гидрофобному) взаимод. разделяемых молекул с пов-стью (образование водородной связи возможно в подвижной фазе с молекулами элюента, к-рый, как правило, содержит воду). 

Аппаратура. Совр. жидкостной хроматограф включает емкости для элюентов, насосы высокого давления, дозатор, хроматографич. колонку, детектор, регистрирующий прибор, систему управления и мат. обработки результатов.

Схематическое описание жидкостного хроматографа

Жидкостный хроматограф состоит из трех основных функциональных частей.

Источник потока подвижной фазы состоит из резервуара, насоса и фильтра. В зависимости от конструкции элементов этого блока в него могут входить устройство для формирования градиентов подвижной фазы; дегазатор и устройство для сглаживания пульсаций давления, если этого требуют конструкции детектора и насоса.

В разделительный блок хроматографа входят устройство для ввода проб, хроматографические колонки, а иногда предварительная колонка для насыщения и термостат.

Блок детектирования представляет собой детектор или систему нескольких детекторов.

Иногда в этот блок входят сборник фракций и измеритель потока. 

Схема жидкостного хроматографа показана на рис. 4.8.

Подвижная жидкая фаза находится в резервуаре, и перед подачей в колонку ее обычно пропускают через дегазатор, с тем чтобы уменьшить содержание в ней растворенных

газов путем временного нагревания. При работе по методу градиентного элюирования компоненты подвижной фазы проходят через смеситель, а затем через фильтр в насос. При использовании импульсного насоса в систему вводят устройство для сглаживания создаваемых этим насосом пульсаций давления (скорости потока).

В термостатируемом пространстве располагаются предварительная колонка для насыщения (применяется только в системах ЖЖХ), устройство для ввода проб в собственно хроматографические колонки, помещенные в термостат (или без них). С детектором колонка соединяется капилляром, имеющим минимальный мертвый объем. При необходимости детектор помещают в отдельный термостат. Сигнал детектора непрерывно регистрируется самописцем. После детектора могут быть установлены измеритель потока, сборник фракций, а также краны для работы по методу циркуляционной хроматографии.

Из Википедии:

Жидкостная хроматография — это хроматография, в которой подвижной фазой является жидкость.

Жидкостная хроматография разделяется на жидкостно-адсорбционную (разделение соединений происходит за счет их различной способности адсорбироваться и десорбироваться с поверхности адсорбента), жидкостно-жидкостную, или распределительную (разделение осуществляется за счет различной растворимости в подвижной фазе - элюенте и неподвижной фазе, физически сорбированной или химически привитой к поверхности твердого адсорбента), ионообменную хроматографию, где разделение достигается за счет обратимого взаимодействия анализируемых ионизирующихся веществ с ионными группами сорбента - ионита. Особое место в использовании методов жидкостной хроматографии занимают эксклюзионная, или гель-хроматография и аффинная, или биоспецифическая.

Жидкостная хроматография как метод была открыта в 1903 русским учёным Михаилом Цветом, который использовал для разделения растительных пигментов на их составляющие колонки, заполненные порошком мела. Предложенный Цветом метод жидкостной хроматографии был незаслуженно забыт и почти не применялся более 30 лет.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]