Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Бомба!.doc
Скачиваний:
6
Добавлен:
25.11.2019
Размер:
307.2 Кб
Скачать

24. Бесконечно малые и бесконечно большие функции. Сравнение функций.

Свойства о.

определение бесконечно малой.Функция (x) называется бесконечно малой при х->а,если limx->a((x))=0

общее понятие предела функции может быть сведено к понятию бесконечно малой:предел limх->а f(x) существует и равен А тогда и только тогда,когда f(x)=A+(x) ,где (x)->0 при х-> а.

также как и для бесконечно малой последовательности справедлива теорема об атифметических свойствах бесконечно малых функций:сумма и произведение конечного числа бесконечно малых при х->а,а также произведение бесконечно малой функции при х ->а на ограниченную функцию являются бесконечно малыми при х ->а.

пример

существует ли предел при х->a у функции f(x)=sin2 x/x *sin1/x.

решение: функцию f(x) можно представмть как произведение трёх функций f(x)=f1(x)*f2(x)*f3(x), где f1(x)=sinx бесконечно малая при x->0. функция f2(x)=sinx/x->1при x->0,а поэтому f2(x)-ограниченная функция;попутно отметим что f2(x) - четная функция и при всех х справедливо неравенство sinx/x<=1.что касается функции f3=sin1/x, то она является ограниченной при любом х ≠ 0 .в точке х=0 она не определена.применяя теорему об арифметических свойствах бесконечно малых,получаем lim f(x)=0.

определение бесконечно большой.Функция (x) называется бесконечно большой при х->а,если для любогосколь угодно большого М>0 существует такое бм>0, что для всех хэ(а-бм,а) v(а,а+бм) выполняется неравенство /(x)/>M. При этом пишут lim х->af(x)=.

замечание.если в последнем неравенстве опустить знак модуля то при (x)> M пишут lim х->a(x)=+,а при (x)<-M пишут lim x->a (x)= -.

пример.

функция (x)=1/1-x является бесконечно большой при x->1,так как для любого M>1 для всех х(1-1/M,1) v (1,1+1/M) выполняется неравенство |1/(1-x)|>M.

Свойства символа "о малое"

пусть 1(x) и 2(x)-две произвольные бесконечно малые при х->а функции такие,что 1(x)=o(β) и α2(x)=o(β).тогда 1(x)+2(x)=o(β) при х ->а.эту теорему кратко можно записать так: о(β)+о (β)=о(β).сформулируем наряду с указанным ещё ряд свойств символа "о малое"(всюду имеется в виду ->0 и β->0 при x->a )

1. o(β)+o(β)=o(β).

2. o(β)-o(β)=o(β).

3. o(cβ)=o(β)  числа c≠0.

4. сo(β)=o(β)  числа c≠0.

5.о(βn)=o(βk) ,n 2(nN), k=1,2,…,n-1.

6. (о(β))n=o(βn) , nN.

7.βn о(β)=o(βn+1) , nN.

8. о(βn)/β= o(βn-1), n 2(nN).

Обозначим любую бесконечно малую при х->а функцию символом о(1). Тогда свойства 8. будет справедливо также при n=1:o(β)/β=o(1).

9. βk=o(β),где сk-числа.

10. о(o(β))=o(β).

11.о( β+o(β))=o(β).

12. β=о() и β=о(β).

13. если ~β,то -β =о() и -β= о(β).

25.Применение эквивалентных бесконечно малых к вычислению пределов. Таблица эквивалентности

Пусть на отрезке [a,b] или на множестве Е заданы две функции f(x) и g(x), причем одна из этих функций простая элементарная функция, например g (x), а другая сложная.

Функция f на множестве Е имеет порядок g, если ‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌│f (x) ‌‌‌‌‌‌‌│ ≤ C‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌│‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌g (x)│, x принадлежит E и С не зависит от х. Это неравенство записывается в виде равенства f(x)=O(g(x)) где х принадлежит Е а и говорят что f есть О большое от g на E.

Пример: функция f (x)=sin(x) ограничена на вещественной оси (-∞,∞) поэтому можно записать так sinx=O(1), x принадлежит (-∞,∞). В то же время sinx=O(x) так как │sinx │≤ x.

Определение: функция f есть о малое от g при х>а если f(x)=ε(x)*g(x) где ε(x) >0 при х >а и записывается в виде f(x)=o(g(x)) (x >a)

Функции f(x) и g(x) называются эквивалентными при х >а если обе они определены и не равны нулю на некоторой окрестности точки а за исключением быть может самой точки а и если lim (f(x)/ g(x))=1 при х >а. отсюда следует что f(x)= g(x)+о(g(x)) (х >а) (g(x)≠0) (х≠а).

Пример: 1-cosx ≈ 0,5*x2 (x>0) так как lim (2*(1-cosx)*x2 =lim4sin2(x/2)/x2=lim(sin(x/2)/(x/2)) 2.=1

Эквивалентные функции (при х>0)

sinx ≈ x+o(x) 2. tgx ≈ x+o(x) 3. arcsinx≈ x+o(x) 4. arctgx ≈ x+o(x) 5. ln(x+1) ≈ x+o(x) 6. ex-1≈x+o(x)

7.(1+x) α -1≈αx+o(x) 8. shx ≈ x+o(x) 9. 1-cosx ≈ x2/2 + o(x)