Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
6.4.1 Пк ПЗ 4.1.docx
Скачиваний:
24
Добавлен:
26.11.2019
Размер:
1.97 Mб
Скачать

2.10 Стійкість асиметричних криптосистем, що базуються на криптоперетвореннях в простих полях. Приклади розв’язку задач та задачі для самостійного розв’язання

2.10.1 Основні теоретичні та практичні відомості

Криптографічні перетворення в простих полях Галуа історично вперше були застосовані для забезпечення передачі відкритих ключів (сертифікатів) по відкритих каналах зв’язку. На основі цього перетворення в подальшому було розроблено ряд протоколів-примітивів, що прийняті як національні стандарти, наприклад, стандарт ANSI X9.42. Крім того, ряд таких криптографічних примітивів використовуються для виробки ключів стандартів на цифрові підписи США - FIPS-186, Росії - ГОСТ Р 34.10-94 та України - ГОСТ 34.310-95.

Розглянемо два основних протоколи виробки загального секрету (ключів), коли в процесі виробки ключів відкриті ключі (сертифікати) передаються по відкритих каналах зв’язку.

Перший протокол базується на використанні при виробці загального секрету довгострокових ключів.

Нехай в криптосистемі відомі загальносистемні параметри , де Р – просте число, а – твірний елемент поля Галуа GF(P). З кута зору вимоги найбільшої складності криптоаналізу число Р має бути “сильним”, наприклад, у вузько- му значенні. Таке число можна подати у вигляді

, (2.60)

де R – також просте число.

В ряді випадків до числа Р ставиться вимога, щоби в канонічному розкладі числа Р-1 містилось велике просте число, скажімо q, тоді

. (2.61)

По суті, прості числа виду (2.60) та (2.61) дозволяють знайти (обчислити) також і твірний елемент а. Так в FIPS-186 та ГОСТ Р 34.10-94 прості числа мають вид (2.61).

В цілому, загальносистемними параметрами можуть бути або пара , або трійка цілих чисел .

Для забезпечення цілісності та справжності параметрів та їх сертифікують математично (перевіряють, що P та q дійсно прості, а число а є твірним елементом) та логічно, коли кожний із загальносистемних параметрів підписується з використанням ключа сертифікації.

При відомих загальносистемних параметрах виробка загального секрету для А та В абонентів на основі довгострокових ключів здійснюється таким чином.

Кореспонденти А та В виробляють особисті ключі та . Потім кожен із них виробляє відкритий ключ

, (2.62)

і

. (2.63)

Відкриті ключі пересилаються між абонентами з забезпеченням їх ціліснос- ті та справжності, наприклад, через центр сертифікації або з використанням ланцюга сертифікатів. Далі кожен із абонентів обчислює загальний секрет як

, (2.64)

. (2.65)

Можна легко перевірити, що

(2.66)

і у обох абонентів є один і той же загальний секрет. Використовуючи одну і ту ж функцію kdf виробки ключа, кожен із абонентів може виробити одинаковий ключ, наприклад,

(2.67)

де – є параметр виробки ключа. В найпростішому випадку значенням може бути номер сеансу.

Більш високу криптографічну стійкість та криптографічну живучість забезпечує протокол виробки ключів на основі довгострокових та сеансових ключів. У цьому випадку спочатку згідно з (2.62) - (2.67) виробляються відкриті довгострокові ключі та , що розсилаються з забезпеченням їх цілісності та справжності.

Сеансові ключі формуються при кожному сеансі зв’язку. Спочатку формуються особисті сеансові ключі та , потім відкриті сеансові ключі

, (2.68)

. (2.69)

Відкриті сеансові ключі пересилаються перед кожним сеансом або поміщаються в першому блоці, що пересилається.

Спочатку обчислюється сеансовий загальний секрет

, (2.70)

. (2.71)

Із (2.70) та (2.71) видно, що , тому кожен із абонентів може виробити однаковий секретний сеансовий ключ

. (2.72)

В подальшому, використовуючи довгостроковий ключ та сеансовий , можна здійснити конфіденційний зв’язок.

Більш переважним є формування сеансового ключа відповідно до правила

, (2.73)

де символ || є знаком конкатенації значень, наприклад, та .

Аналіз показує [26], що найбільшу загрозливість для криптоперетворень в простих полях складають атаки типу універсальне розкриття та повне розкриття. Сутність атаки типу універсальне розкриття заключається в знаходженні деякого математичного алгоритму, що дозволяє, в загальному випадку, обчислити та і та . До сьогодні такі випадки не відомі.

Сутність атаки типу повне розкриття заключається в розв’язку дискретних логарифмічних рівнянь

, (2.74)

та

.

При розв’язку (2.74) вважається, що загальносистемні параметри (Р, а) та відкриті ключі та є відомими.

Якщо криптоаналітик визначить особистий ключ , то в подальшому він зможе нав’язувати хибні загальні секрети та відповідно хибні пові-домлення. Для суттєвого ускладнення можливості нав’язування хибних загальних секретів використовують як довгострокові, так і сеансові загальні секрети. Тобто на кожний сеанс ключ формують за правилом (2.73). В цьому випадку для порушення конфіденційності необхідно розв’язувати вже два дискретних логарифмічних рівняння, наприклад, (2.62) та (2.68) або (2.63) та (2.69). При удачі криптоаналітик може визначити три особистих ключі або .

Розглянемо основні алгоритми та складність розв’язку дискретних логарифмічних рівнянь. На сьогодні відомо декілька алгоритмів і відповідно методик складності розв’язку дискретних логарифмічних рівнянь. Основними із них є алгоритм -Полларда, Поліга-Хелмана [11], загального решета числового поля [10,11] та алгоритм Купершмідта [11].

Історично першим з’явився метод і на його основі алгоритм -Полларда. Нехай необхідно розв’язати дискретне логарифмічне рівняння

. (2.75)

Формуватимемо випадкові пари цілих чисел та . Нехай знайдено такі дві пари чисел та , що

. (2.76)

Підставимо (2.75) в (2.76), в результаті маємо

або

. (2.77)

В рівнянні (2.77) згідно з теоремою Ойлера ступені можна прирівняти за модулем (Р-1), тобто

. (2.78)

Із (2.78) в свою чергу маємо

або

. (2.79)

Таким чином, необхідно знайти пари цілих чисел та , що задовольняють (2.76), а далі підставивши їх в (2.79), отримаємо розв’язок. По суті алгоритм -Полларда і забезпечує формування цих пар чисел.

Виберемо як перший елемент послідовності як

. (2.80)

Далі обчислюватимемо послідовність за рекурентним правилом

(2.81)

Постійну с вибирають таким чином, щоби с знаходилось між а та b приблизно на однаковій відстані. Але в більшості випадків його підбирають.

Послідовність називають послідовністю -Полларда. Для успішного розв’язку дискретного логарифмічного рівняння необхідно знайти два значення та таких, що

. (2.82)

Після цього знаходять значення та та обчислюють згідно з (2.79) особистий ключ.

Метод Поліга-Хемана базується на китайській теоремі про лишки [17]. Нехай знову необхідно розв’язати рівняння

. (2.83)

Розв’язок виконується в декілька етапів:

  • знаходиться канонічний розклад числа Р-1;

  • обчислюються лишки за модулями канонічного розкладу;

  • обчислюється значення Х згідно з китайською теоремою про лишки.

Перший етап виконується достатньо просто, так як згідно з (2.60) та (2.61) на етапі побудови пари розклад числа Р-1 є відомим. Інакше довести, що а – твірний елемент, дуже складно. Тому на першому етапі Р-1 подається у вигляді:

(2.84)

Далі знайдемо лишки від ділення Х на , в результаті для кожного отримаємо

, (2.85)

причому .

Необхідно знайти коефіцієнти для усіх i. Оскільки лишки подано за модулем , то

. (2.86)

Запишемо далі (2.83) у вигляді

. (2.87)

та піднесемо ліву і праві частини (2.87) до ступеня . В результаті отримаємо

. 2.88)

Обчислимо значення , підставивши в нього (2.86), в результаті маємо

. (2.89)

Якщо перемножити на вираз в дужках, то ми отримаємо

. (2.90)

В цьому можна переконатися, так як всі члени, крім діляться на Р-1, тому вони даватимуть лишок рівний 0. З урахуванням (2.90) (2.10.88) має вигляд

. (2.91)

Тепер піднесемо ліву та праві частини (2.87) до ступеня , в результаті отримаємо

. (2.92)

Підставивши в (2.92) вираз (2.86), отримаємо

. (2.93)

Оскільки на (Р-1) тепер не ділитимуться два члени

та ,

тому вони не дорівнюватимуть нулю.

Аналогічно можна перетворити (2.87) для усіх і для усіх ступенів. В результаті для конкретного модуля ступеня отримаємо порівнянь

(2.94)

Використовуючи (2.94), можна знайти усі лишки виду (2.84), для цього достатньо знайти коефіцієнти . Їх ми знаходимо, використовуючи (2.94). Спочатку, перебираючи значення , знаходимо і так далі для усіх ступенів, включно до

Таким чином, для фіксованого система (2.94) дозволяє визначити коефіцієнти і, як наслідок, лишок (2.85). Для знаходження другого лишку необхідно взяти наступне значення .

Таким чином, ми одержуємо лишки

(2.95)

Використовуючи китайську теорему про лишки, отримаємо [17]

, (2.96)

де

Зворотний елемент знаходимо із порівняння

.

Таким чином, (2.96) дає розв’язок дискретного логарифмічного порівняння виду (2.83) або (2.87).

Важливими в теоретичному плані є задачі оцінки складності розв’язку дискретних логарифмічних рівнянь. Для алгоритму -Полларда як асимптотич-ну оцінку складності розв’язку можна використовувати співвідношення

. (2.97)

Інші алгоритми мають субекспоненціальну складність виду

(2.98)

Так, при застосуванні загального решета числового поля Є відомості, що алгоритм Купершмідта дозволяє розв’язати дискретне логарифмічне рівняння в полі GF(2n) зі складністю .

Складність алгоритму Поліга-Хелмана можна оцінити безпосередньо за наведеним вище алгоритмом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]