Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гражданская оборона (ГО) - Лекция 17 - Радиобиология - предмет, задачи, структура - 2010 год / Лекция № 17 по Гражданской Обороне на тему Радиобиология - предмет, задачи, структура.doc
Скачиваний:
92
Добавлен:
14.06.2014
Размер:
207.36 Кб
Скачать

Основные свойства и единицы измерений ионизирующих излучений

Ионизирующие излучения (ИИ) получили свое название по свойству, отличающему их от остальных излучений – по способности вызывать ионизацию атомов и молекул в облучаемом веществе.

Другое важное свойство ИИ – это проникающая способность. Глубина проникновения ИИ зависит, с одной стороны, от природы излучения, а с другой стороны – от состава и плотности облучаемого объекта.

По своей природе все ИИ подразделяются на электромагнитные и корпускулярные излучения. К электромагнитным относятся рентгеновское и -излучение. Электроны и позитроны (-частицы), протоны (ядра водорода), дейтроны (ядра дейтерия), -частицы (ядра гелия) и тяжелые ионы (ядра других элементов) имеют корпускулярную природу. Кроме того, к корпускулярным излучениям относят не имеющие заряда нейтроны и отрицательно заряженные мезоны, в частности -мезоны, имеющие значительную перспективу использования в радиационной онкологии.

Доза излучения

По аналогии с понятием, используемым в фармакологии, для оценки уровня лучевого воздействия было введено понятие дозы излучения.

Исторически первым критерием, примененным для измерения ИИ, стал суммарный заряд частиц с электрическим зарядом одного знака, образовавшихся в единичном объеме воздуха вследствие его ионизации излучением. Именно таков физический смысл экспозиционной дозы (Х), определяемой по формуле:

Х = dQ / dm, где:

dQ – суммарный заряд всех ионов одного знака, возникающих в воздухе при полном торможении всех вторичных электронов, образованных фотонами ИИ в малом объеме пространства, dm – масса воздуха в этом объеме.

Изменения, вызываемые излучением в воздухе и в других средах (в том числе в тканях организма), количественно различны. Это связано с разным количеством энергии, передаваемой излучением одинаковым по массе количествам разных веществ. Учесть этот фактор можно, выражая количество ИИ в единицах поглощенной дозы (D). Физический смысл поглощенной дозы – количество энергии, переданной излучением единичной массе вещества:

D = dE / dm, dm  0.

Если поглощенная доза распределяется в каком-то одном участке тела говорят о локальном облучении, а если облучению подвергается все тело или большая его часть – о тотальном облучении. Вариантами тотального облучения являются равномерное (неравномерность по дозе на отдельные части тела не превышает 10 %) и неравномерное облучение.

Непосредственно измерить все биологически значимые величины поглощенных доз трудно из-за незначительности энергии, передаваемой организму излучением.

Различные ИИ вызывают в биосистемах количественно различные эффекты даже при одной поглощенной дозе. Это связано, главным образом, с такими характеристиками излучений, как линейная передача энергии (ЛПЭ) и коэффициент ослабления . Для малоразмерных биологических объектов (например, для клеток) при одной и той же поглощенной дозе излучения его биологический эффект тем больше, чем больше величина ЛПЭ. Для сравнительной оценки биологического действия различных видов ИИ введено понятие эквивалентной дозы (Н). Она определяется как поглощенная доза в органе или ткани, умноженная на соответствующий взвешивающий коэффициент для данного вида излучения:

H = D  Q, где:

D – поглощенная доза в данной точке ткани, а Q – средний коэффициент качества излучения, который устанавливается для каждого вида излучения в зависимости от его ЛПЭ. Эквивалентную дозу, как правило, используют для оценки опасности хронического лучевого воздействия на организм.

Следует также учитывать, что одни органы и ткани более чувствительны к действию радиации, чем другие. Например, при одинаковой эквивалентной дозе облучения вероятность возникновения рака в легких больше, чем в щитовидной железе. Облучение половых желез особенно опасно из-за риска генетических последствий. Поэтому дозы облучения органов и тканей также следует учитывать с различными коэффициентами. Это положение положено в основу определения эффективной дозы, которая также измеряется в зивертах (Зв). В соответствии с НРБ-99 доза эффективная (E) – это величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности.