Добавил:
tamila.okruadze@yandex.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Модули_экзамены 2 курс 2 семестр / Физиология / Билеты по физиологии+формулы+показатели организма.docx
Скачиваний:
236
Добавлен:
03.07.2020
Размер:
4.86 Mб
Скачать

Частная физиология

61. Понятие о системе крови, ее свойства и функции. Состав крови. Гематокрит. Основные физиологические константы крови и механизмы их поддержания.

Отечественный клиницист Г. Ф. Ланг считал, что в систему крови входят кровь, органы кроветворения и кроверазрушения, а также аппарат регуляции. Кровь как ткань обладает следующими особен­ностями: 1) все ее составные части образуются за пределами сосу­дистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении.

Кровь животных заключена в систему замкнутых трубок — кровеносных сосудов. Кровь состоит из жидкой части — плазмы и форменных элементов — эритроцитов, лейкоцитов и тромбоцитов. У взрослого человека форменные элементы крови составляют около 40—48%, а плазма — 52—60%. Это соотношение получило название гематокритного числа (от греч. haima — кровь, kritos — показатель). В практической деятельности для характеристики гематокритного числа указывается лишь показатель плотной части крови.

Основные функции крови

1. Дыхательная - доставка клеткам кислорода и удаление углекислого газа.

2. Трофическая (питательная) - кровь обеспечивает клетки питательными (глюкоза, аминокислоты, жиры) веществами, водой, витаминами, минеральными веществами.

3. Экскреторная - удаление от клеток конечных продуктов метаболизма.

4. Терморегуляторная - кровь обеспечивает стабилизацию температурных условий для клетки путем транспорта тепловой энергии, образующейся в активно функционирующих клетках.

5. Защитная функция крови направлена на предотвращение критических для клетки подъёмов в крови концентрации экзогенных токсических веществ и ядов путём неспецифической адсорбции их на поверхности клеток крови и образованием комплексов с белками плазмы с последующим выведением их из организма органами выделения. Лейкоциты удаляют из организма генетически чужеродные соединения биологического происхождения путём фагоцитоза, цитолиза, гидролиза или образованием специфических антител в реакциях гуморального и клеточного иммунитета.

6. Гомеостатическая роль крови заключается в стабилизации важных констант организма (концентрации водородных ионов-рН, осмотического давления, ионного состава тканей).

7. Кровь обеспечивает водно-солевой обмен клеток.

8. Циркулирующая кровь обеспечивает связь между органами -важное условие гуморальной регуляции функций в организме. Кровь переносит гормоны и другие биологически активные вещества от мест образования к клеткам-мишеням.

9. Транспортная является следствием функционирования миокарда как насоса, энергия сокращения которого обеспечивает перемещение крови по сосудистой системе организма и её контакт со всеми анатомо-функциональными системами организма.

10. Белки плазмы могут быть использованы организмом в качестве источника аминокислот.

Кровь обладает способностью к свертыванию, что предотвращает опасные для жизни кровопотери при повреждениях тканей и кровеносных сосудов.

Общее количество крови в организме взрослого человека составляет 6 - 8% от массы тела, или приблизительно 4,5 - 6 л. Массивная кровопотеря около 1/3 её объёма (примерно 1,5 л) сопровождается падением артериального давления и последующей гибелью организма.

Состав крови

ЭРИТРОЦИТЫ

Эритроциты, входящие в состав крови - это красные кровяные клетки, которые блвгодаря содержащемуся в них особому белку - гемоглобину и выполняют в организме три основные функции: транспортную, регуляторную и защитную.

ЛЕЙКОЦИТЫ

Следующий важный элемент, входящий в состав крови это лейкоциты - белые кровяные клетки, которые делятся на несколько видов: гранулоциты (нейтрофилы, эозинофилы, базофилы) и агранулоциты (лимфоциты, моноциты). Все эти названия вы наверное уже видели в общем анализе крови.

Основное назначение лейкоцитов - участие в различных видах защиты организма (иммунная защита, фагоцитоз, пиноцитоз, система комплимента и т.д.).

ТРОМБОЦИТЫ

Тромбоциты - это кровяные пластинки, основная функция которых - остановка кровотечения (гемостаз). Кроме того, этот элемент состава крови принимает участие в защите организма от чужеродных агентов, тромбоциты обладают фагоцитарной активностью, являются источником лизоцима и β-лизинов, способных разрушать мембраны некоторых бактерий, а также выделяют в кровь особые соединения, которые берегут организм от попадания в него болезнетворных микробов.

ПЛАЗМА

И последний элемент, входящий в соства крови - это плазма - раствор, состоящий на 90-92% из воды, остальное это органические и неорганические вещества. В плазме содержится ряд растворенных веществ, таких как транспортные белки, неорганические соли, витамины, микроэлементы, промежуточные продукты.

Гематокрит — один из условных показателей, получаемый в результатах общего анализа крови, указывающий на процентное соотношение объема клеток крови в общем объеме крови. Также часто встречается описание, согласно которому замер делается не по всем клеткам, а только по эритроцитам, что также верно, поскольку эритроциты составляют 99% в общем объеме клеток крови.

Правильное название показателя — гематокритное число. Собственно «гематокритом» называется стеклянная колба, применяемая в диагностике для фракционирования крови в центрифуге. В народе для определения гематокритного числа часто используется термин «густота крови», вполне корректный и доступный для понимания, но и термин "гематокрит" прижился настолько хорошо, что повсеместно используется даже в официальной медицине.

Как следует из определения, единицами измерения гематокрита являются проценты. Современное зарубежное диагностическое оборудование иногда также указывает значение гематокрита в отношении литров к литрам, записывая в результатах анализа десятичную дробь с точностью до сотых.

Примеры записи гематокритного числа (одно и то же значение): - стандартная запись: 45%; - новая запись: 0,45 л/л.

Нормы гематокрита

Норма гематокрита имеет зависимость как от пола, так и от возраста. В целом нормы показателя выглядят следующим образом:

Возраст

У мужчин (%)

У женщин (%)

Нормы гематокрита у взрослых

Старше 45 лет

40 - 50

35 - 47

18 - 45 лет

39 - 49

35 - 45

Нормы гематокрита у подростков

12-17 лет

35 - 45

34 - 44

Нормы гематокрита у детей

6 - 11 лет

33 - 41

1 - 5 лет

32 - 41

2 нед. - 12 мес.

33 - 44

Новорожденные

33 - 65

Также вариантом нормы является незначительное снижение гематокрита у беременных. Впрочем, здесь важно помнить, что любые изменения состава крови у беременных должны быть предметом внимания врача

Основные физиологические константы крови. Относительная плотность 1,052-1,062 зависит от содержания эритроцитов. Вязкость крови определяется, по отношению к вязкости воды она составляет 4,05,0 в основном зависит от содержания эритроцитов и меньше от плазмы крови. Осмотическим давлением называют силу, которая заставляет растворитель (для крови это вода) переходить через полупроницаемую мембрану, из менее концентрированного в более концентрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом по точке замерзания, которая для крови составляет 0,54 – 0,580 Осмотическое давление переход через мембрану из более концентрированного в/ва в менее концентрированное. Осмотическое давление крови 7,3-7,6 эритроцитов . Осмотическое давление крови на 60% зависит от NaCL. Растворы, имеющие одинаковое с кровью осмотическое давление, называются изотонические. К таким растворам для теплокровных животных и человека относят 0,9% раствор натрия хлорида и 5% раствор глюкозы. Растворы, имеющие большее осмотическое давление, чем кровь называются гипертоническими, а меньшее – гипотоническими. Постоянство осмотического давления необходимо для нормального водно-солевого обмена и деятельности выделительных органов.Онкотическое давление 0,02 – 0,04 атм. или 25-30 мм.рт.ст. обусловлено, в основном, альбуминовой фракцией белков плазмы и удерживает воду в кровеносном русле.рН – 7,35 – 7,4. Длительное изменение рН на 0,1 опасно для жизни. Ацидоз – сдвиг кислотно-щелочного состояния в связи с положительным балансом ионов водорода, то есть при накоплении Н-ионов в крови. Алкалоз– сдвиг кислотно – щелочного состояния в связи с отрицательным балансом ионов водорода в крови, то есть при уменьшении Н-ионов в крови. Щелочной резерв крови представлен суммой оснований. Постоянство рН поддерживается буферными системами крови:

- бикарбонатная (NaHCO3 – Н2СО3)

- гемоглобиновая (ННВ – КНВО2)

- белковая (белки - амфолиты - соединения, способные как присоединять, так и отщеплять протон)

- фосфатная (NaH2 PO4 – NaHPO4)

Буфер-это система, которая стремится противостоять изменению рН ,после добавления небольших количеств кислоты или основания. Емкость гидрокарбонатной буферной системы составляет 7-4% общей буферной емкости крови и 97-98% буферной системы внеклеточной жидкости. Буферные свойства гемоглобина обеспечивают ¾ всей буферной системы крови.

В состав плазмы входит вода 90-92% и 8-10% сухого остатка. Из сухого остатка:

- белки 7-8%(альбумины 38-50 г л, глобулины 20-30 г л, фибриноген 2-4 г л)

- катионы натрия, калия, кальция, магния и другие

- анионы хлора, фосфорной кислоты, угольной кислоты и серной кислоты и другие

- микроэлементы: цинк, железо, медь и другие

- азотосодержащие вещества: мочевина, мочевая кислота, креатинин, аминокислоты

- белки, жиры, углеводы

- гормоны, ферменты, витамины.

62. Электролитный состав плазмы крови. Осмотическое давление крови. Функциональные системы, обеспечивающие постоянство осмотического давления.

Безазотистые органические компоненты крови

В группу безазотистых органических веществ крови входят углеводы, жиры, липиды, органические кислоты и некоторые другие вещества. Все эти соединения являются либо продуктами промежуточного обмена углеводов и жиров, либо играют роль питательных веществ. Основные данные, характеризующие содержание в крови различных безазотистых органических веществ, представлены в табл. 17.1. В клинике большое значение придают количественному определению этих компонентов крови.

Известно, что общее содержание воды в организме человека составляет 60–65% от массы тела, т.е. приблизительно 40–45 л (если масса тела 70 кг); 2/3 общего количества воды приходится на внутриклеточную жидкость, 1/3 – нa внеклеточную. Часть внеклеточной воды находится в сосудистом русле (5% от массы тела), большая часть – вне сосудистого русла – это межуточная (интерстициальная), или тканевая, жидкость (15% от массы тела). Кроме того, различают «свободную воду», составляющую основу внутри- и внеклеточной жидкости, и воду, связанную с различными соединениями («связанная вода»).

Распределение электролитов в жидких средах организма очень специфично по своему количественному и качественному составу.

Из катионов плазмы натрий занимает ведущее место и составляет 93% от всего их количества. Среди анионов следует выделить прежде всего хлор и бикарбонат. Сумма анионов и катионов практически одинакова, т.е. вся система электронейтральна.

Натрий. Это основной осмотически активный ион внеклеточного пространства. В плазме крови концентрация ионов Na+приблизительно в 8 раз выше (132–150 ммоль/л), чем в эритроцитах.

При гипернатриемии, как правило, развивается синдром, обусловленный гипергидратацией организма. Накопление натрия в плазме крови наблюдается при особом заболевании почек, так называемом паренхиматозном нефрите, у больных с врожденной сердечной недостаточностью, при первичном и вторичном гиперальдостеронизме.

Гипонатриемия сопровождается дегидратацией организма. Коррекция натриевого обмена достигается введением растворов хлорида натрия с расчетом дефицита его во внеклеточном пространстве и клетке.

Калий. Концентрация ионов К+ в плазме колеблется от 3,8 до 5.4 ммоль/л; в эритроцитах его приблизительно в 20 раз больше. Уровень калия в клетках значительно выше, чем во внеклеточном пространстве, поэтому при заболеваниях, сопровождающихся усиленным клеточным распадом или гемолизом, содержание калия в сыворотке крови увеличивается.

 

Гиперкалиемия наблюдается при острой почечной недостаточности и гипофункции коркового вещества надпочечников. Недостаток альдостерона приводит к усилению выделения с мочой натрия и воды и задержке в организме калия.

При усиленной продукции альдостерона корковым веществом надпочечников возникает гипокалиемия, при этом увеличивается выделение калия с мочой, которое сочетается с задержкой натрия в тканях. Развивающаяся гипокалиемия вызывает тяжелые нарушения в работе сердца, о чем свидетельствуют данные ЭКГ. Понижение содержания калия в сыворотке отмечается иногда при введении больших доз гормонов коркового вещества надпочечников с лечебной целью.

Кальций. В эритроцитах обнаруживаются следы кальция, в то время как в плазме содержание его составляет 2,25–2,80 ммоль/л.

Различают несколько фракций кальция: ионизированный кальций, кальций неионизированный, но способный к диализу, и недиализирующийся (недиффундирующий), связанный с белками кальций.

Кальций принимает активное участие в процессах нервно-мышечной возбудимости (как антагонист ионов К+), мышечного сокращения, свертывания крови, образует структурную основу костного скелета, влияет на проницаемость клеточных мембран и т.д.

Отчетливое повышение уровня кальция в плазме крови наблюдается при развитии опухолей в костях, гиперплазии или аденоме паращитовидных желез. В таких случаях кальций поступает в плазму из костей, которые становятся ломкими.

Важное диагностическое значение имеет определение уровня кальция при гипокалъциемии. Состояние гипокальциемии наблюдается при гипо-паратиреозе. Нарушение функции паращитовидных желез приводит к резкому снижению содержания ионизированного кальция в крови, что может сопровождаться судорожными приступами (тетания). Понижение концентрации кальция в плазме отмечают также при рахите, спру, обтурационной желтухе, нефрозах и гломерулонефритах.

Магний. В организме магний локализуется в основном внутри клетки – 15 ммоль/ на 1 кг массы тела; концентрация магния в плазме 0,8–1.5 ммоль/л, в эритроцитах – 2,4–2,8 ммоль/л. Мышечная ткань содержит магния в 10 раз больше, чем плазма крови. Уровень магния в плазме даже при значительных его потерях длительное время может оставаться стабильным, пополняясь из мышечного депо.

Фосфор. В клинике при исследовании крови различают следующие фракции фосфора: общий фосфат, кислоторастворимый фосфат, липоидный фосфат и неорганический фосфат. Для клинических целей чаще определяют содержание неорганического фосфата в плазме (сыворотке) крови.

Уровень неорганического фосфата в плазме крови повышается при гипопаратиреозе, гипервитаминозе D, приеме тироксина, УФ-облучении организма, желтой дистрофии печени, миеломе, лейкозах и т.д.

Гипофосфатемия (снижение содержания фосфора в плазме) особенно характерна для рахита. Очень важно, что снижение уровня неорганического фосфата в плазме крови отмечается на ранних стадиях развития рахита, когда клинические симптомы недостаточно выражены. Гипофосфатемия наблюдается также при введении инсулина, гиперпаратиреозе, остеомаляции, спру и некоторых других заболеваниях.

Железо. В цельной крови железо содержится в основном в эритроцитах (около 18,5 ммоль/л), в плазме концентрация его составляет в среднем 0,02 ммоль/л. Ежедневно в процессе распада гемоглобина эритроцитов в селезенке и печени освобождается около 25 мг железа и столько же потребляется при синтезе гемоглобина в клетках кроветворных тканей. В костном мозге (основная эритропоэтическая ткань человека) имеется лабильный запас железа, превышающий в 5 раз суточную потребность в железе. Значительно больше запас железа в печени и селезенке (около 1000 мг, т.е. 40-суточный запас). Повышение содержания железа в плазме крови наблюдается при ослаблении синтеза гемоглобина или усиленном распаде эритроцитов.

При анемии различного происхождения потребность в железе и всасывание его в кишечнике резко возрастают. Известно, что в двенадцатиперстной кишке железо всасывается в форме двухвалентного железа. В клетках слизистой оболочки кишечника железо соединяется с белком апоферрити-ном и образуется ферритин. Предполагают, что количество поступающего из кишечника в кровь железа зависит от содержания апоферритина в стенках кишечника. Дальнейший транспорт железа из кишечника в кроветворные органы осуществляется в форме комплекса с белком плазмы крови трансферрином. Железо в этом комплексе трехвалентное. В костном мозге, печени и селезенке железо депонируется в форме ферритина – своеобразного резерва легкомобилизуемого железа. Кроме того, избыток железа может откладываться в тканях в виде хорошо известного морфологам метаболически инертного гемосидерина.

Недостаток железа в организме может вызвать нарушение последнего этапа синтеза гема – превращение протопорфирина IX в гем. Как результат этого развивается анемия, сопровождающаяся увеличением содержания порфиринов, в частности протопорфирина IX, в эритроцитах.

Микроэлементы. Обнаруживаемые в тканях, в том числе в крови, в очень небольших количествах (10–6–10–12%) минеральные вещества получили название микроэлементов. К ним относят йод, медь, цинк, кобальт, селен и др. Большинство микроэлементов в крови находится в связанном с белками состоянии. Так, медь плазмы входит в состав церрулоплазмина, цинк эритроцитов целиком связан с карбоангидразой (карбонат-дегидратаза), 65–70% йода крови находится в органически связанной форме – в виде тироксина. В крови тироксин содержится главным образом в связанной с белками форме. Он составляет комплекс преимущественно со специфическим связывающим его глобулином, который располагается при электрофорезе сывороточных белков между двумя фракциями α-глобулина. Поэтому тироксинсвязывающий белок носит название интеральфаглобулина.

Кобальт, обнаруживаемый в крови, также находится в белково-связанной форме и лишь частично как структурный компонент витамина В12. Значительная часть селена в крови входит в состав активного центра фермента глутатионпероксидазы, а также связана с другими белками.

Различные соединения, растворенные в плазме и форменных элементах крови, создают в них осмотическое давление. Мембраны форменных элементов, стенок сосудов являются полупроницаемой. Все они хорошо пропускают воду, значительно хуже ионы и молекулы различных веществ. В норме осмотическое давление плазмы крови составляет около 7,5 атм (5700 мм рт. Ст., Или 762 кПа). Осмотическая активность плазмы составляет около 290 мосм / л. Величина осмотического давления определяется концентрацией растворенных молекул, а не их размерами. Большая часть (примерно 99,5%) ионов плазмы - неорганические ионы. От их концентрации и зависит величина осмотического давления. На белки плазмы приходится лишь 0,03-0,04 атм (25-ЗО мм рт. Ст.) Давления. Но давление, созданный белками, играет важную роль в регулировании распределения воды между плазмой и тканями. Поэтому эту часть давления выделяют отдельно, называя его онкотическим давлением. Участие онкотического давления в регулировании обмена воды обусловлена тем, что стенки сосудов (капилляров) в большинстве органов непроницаемы для белков. В тканевой жидкости свободных белков мало, поэтому существует градиент их концентрации по обе стороны стенки капилляра. В крови же и межклеточной жидкости количество неорганчних молекул, как правило, одинакова. Благодаря высокому онкотического давления в крови содержится вода. Осмотическое и онкотическое давление обеспечивает водный обмен между средами организма. Они влияют также на обмен воды между плазмой крови и форменными элементами. При нарушении осмотического или онкотического давления в плазме могут изменяться функция клеток крови и продолжительность их жизни. Так, при снижении осмотического давления плазмы вода будет поступать в клетки крови, при достижении предела растяжимости приведет к разрыву их оболочки - осмотического гемолиза. Напротив, повышение осмотического давления плазмы вызывает выход воды из клеток, потерю упругости, сморщивание их. Это также негативно сказывается на жизнедеятельности клеток и может привести к разрушению их макрофагами тканей.

63. Белки плазмы крови, их состав и физиологическое значение. Онкотическое давление крови и его значение для водного баланса тканей и образования мочи.

Белки плазмы могут быть подразделены на две фракции, отличающиеся по своим физико-химическим свойствам:

Ø сывороточные альбумины

Ø сывороточные глобулины

Методом электрофореза белки плазмы крови можно разделить на 5 фракций:

 Альбумины 55-65%

 α1 – глобулины 2-4%

 α2 – глобулины 6-12%;

 β- глобулины 8-12% 

 γ-глобулины 12-22%

Методом иммуноэлектрофореза можно разделить белки плазмы крови более чем на 30 фракций.

Содержание белка снижается при заболеваниях печени, сопровождающихся нарушением её белоксинтезирующих функций (циррозы, хронические гепатиты). Падает содержание и при повышении проницаемости сосудов клубочка нефрона (нефротический синдром).

Физиологическая роль БПК –общее содержание белков плазмы определяет коллоидно-осмотическое, или онкотическое, давление плазмы. Обладая свойством кислоты и основания, белки плазмы способны выявлять буферные свойства при поступлении в кровь кислот и оснований. Белки плазмы крови принимают непосредственное участие в белковом обмене всего организма. Белки плазмы интенсивно образуются и, очевидно, столь же быстро потребляются. Наряду с некоторыми другими факторами, белки плазмы крови играют существенную защитную роль при внедрении в организм инфекционного начала. Невосприимчивость организма к инфекционным заболеваниям (иммунитет), в особенности приобретаемая в результате перенесенной болезни или проведенных прививок, в ряде случаев зависит от образования особых защитных или иммунных тел белковой природы, поступающих в плазму крови. Во всех случаях, когда в организм попадает чужеродный белок (антиген), в организме образуются так называемые антитела — вещества тоже белковой природы. Местом образования их является ретикуло-эндотелиальная и лимфоидная ткань. В одних случаях эти вещества обезвреживают ядовитые вещества (токсины), выделяемые микроорганизмами (антитоксины). В других случаях в сыворотке крови образуются вещества, или склеивающие микробы (агглютинины), или растворяющие их (л и з и н ы), или осаждающие чужеродные для организма белки (и р е ц и п и т и н ы).

Сывороточные альбумины являются белками, имеющими частицы почти шарообразной формы с небольшим молекулярным весом 68 000. Около 40% альбуминов находится в крови, остальное 60% – в межклеточной жидкости. Эти белки хорошо растворимы в воде и не выпадают в осадок даже в том случае, если путем диализа или электродиализа из раствора целиком удаляются электролиты. При прибавлении электролитов альбумины высаливаются с трудом. Альбумины не осаждаются при половинном насыщении сернокислым аммонием, только при полном насыщении. Содержание альбуминов в плазме крови человека составляет 4—5%. Альбумины удерживают в растворенном состоянии некоторые липоиды и тем самым способствуют их переносу кровью. Они создают 80% онкотического давления плазмы крови. Осуществляют питательную функцию, являются резервом аминокислот для синтеза белков, транспортируют холестерин, жирные кислоты, билирубин, соли желчных кислот, тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов, барбитуратов, сердечных гликозидов), катионы Са2+, Си 2+, Zn2+, прогестерон, тироксин, трийодтиронин Синтезируются в печени. Нормальное содержание – 37-55 г/л сыворотки крови. Снижение содержания наблюдается при нефротическим синдроме, заболеваниях печени, связанных с нарушением её белоксинтезирующей функции (цирроз), ожоги, сепсис.

Сывороточные глобулины представляют группу белков с меньшей степенью дисперсности и с неодинаковым молекулярным весом. Молекулярный вес их большой около 100 000. В совершенно чистой воде глобулины нерастворимы. Поэтому при диализе они выпадают в осадок. Глобулины высаливаются уже при половинном насыщении сернокислым аммонием. Количество глобулинов в плазме крови человека составляет примерно 2.5%. Синтезируются в печени, костном мозге, селезенке, лимфатических узлах.

Онкотическое давление — часть осмотического давления, обусловленная белками. 80 % онкотического давления создают аль­бумины.

 

Онкотическое давление не пре­вышает 30 мм рт. ст., т.е. составляет 1/200 часть осмотического давления.

Используется несколько показателей осмотического давления:

Единицы давления атм. Или мм рт.ст.

Осмотическая активность плазмы[Б68] – концентрации кинетически (осмотически) активных частиц в единице объёма. Чаще всего используется единица миллиосмоль на литр – мосмоль/л.

1 осмоль = 6,23 ´ 1023 частиц

Нормальная осмотическая активность плазмы = 285-310 мосмоль/л.

Мосмоль = ммоль

В практике часто используются понятия осмолярности – ммоль/л и осмоляльности ммоль/кг (литр и кг растворителя)

Чем больше онкотическое давление, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду .

При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.

Онкотическое давление играет более важную роль в регуляции водного обмена, чем осмотическое. Почему? Ведь оно в 200 раз меньше осмотического. Дело в том, что Градиент концентрация электролитов (которые обуславливают осмотическое давление) по обе стороны биологических барьеров

 

В клинической и научной практике широко используются такие понятия как изотонические, гипотонические и гиперто­нические растворы. Изотонические растворы имеют суммарную концентрацию ионов, не превышающую 285-310 ммоль/л. Это может быть 0,85 % раствор хлористого натрия (его часто назы­вают "физиологическим" раствором, хотя это не полностью отражает ситуацию), 1,1 % раствор хлористого калия, 1,3 % раствор бикарбоната натрия, 5,5 % раствор глюкозы и т.д. Гипотонические растворы имеют меньшую концентрацию ионов - менее 285 ммоль/л, а гипертонические, наоборот, большую выше 310 ммоль/л.

 

Эритроциты, как известно, в изотоническом растворе не изменяют свой объем, в гипертоническом - умень­шают его, а в гипотоническом - увеличивают пропорционально степени гипотонии, вплоть до разрыва эритроцита (гемолиза). Явление осмотического гемолиза эритроцитов используется в клинической и научной практике с целью определения качест­венных характеристик эритроцитов (метод определения осмоти­ческой резистентности эритроцитов).

64.Основные физико-химические константы крови, их физиологическое значение. Механизмы поддержания изоосмии, изогидрии (рН), изоионии. Кровезамещающие растворы.

Основные физико-химические константы крови:

Плотность

1,058-1,062 г/мл

Вязкость

4,5-5,0

(при вязкости воды 1)

Осмотическое давление

7,3 атм. (5600 мм. рТ. ст.)

Создается определенной концентрацией солей (гл.обр.NaCl)

Онкотическое давление

30 мм РТ. ст.

это осмотическое давление, обусловленное присутствием в плазме белков

Температура

37-40 С0

Реакция крови (рН): артериальное венозное

7,35-7,47; На 0,2 единицы ниже

Реакция крови поддерживается на постоянном уровне.

Изогидрия – постоянство рН, обусловленное действием буферных систем и физиологическим контролем.

В норме кислотно-основной баланс поддерживается тремя механизмами:

• Буферные системы

• Респираторный контроль CO2

• Почечная компенсация

Буферные системы организма устраняют сдвиги рН:

• бикарбонатная,

• фосфатная,

• белковая,

• гемоглобиновая.

Физиологические механизмы восстанавливают и буферную ёмкость.

Ацидоз– избыточное содержание анионов кислот.

• Компенсированный ацидоз – закисление без сдвига рН.

• Некомпенсированный ацидоз – сдвиг рН в кислую сторону (при рН<6,8-смерть).

Изоосмия — изотония (от Изо… и греческого osmós — толчок, tónos — напряжение) — это относительное постоянство осмотического давления в жидких средах и тканяхорганизмаОрганизм (от средне-векового латинского organizo — устраиваю, сообщаю стройный вид) — живое существо, обладающее совокупностью свойств, отличающих его от неживой материи. Большинство организмов имеет клеточное строение. Формирование целостного организма — процесс, состоящий из дифференцировки структур (клеток, тканей, органов) и функций и их интеграции как в онтогенезе, так и в филогенезе., обусловленное поддержанием на данном уровне концентраций содержащихся в них веществ: электролитов, белковБелки — природные высокомолекулярные органические соединения. В зависимости от формы белковой молекулы различают фибриллярные и глобулярные белки, особую группу составляют сложные белки, в состав которых помимо аминокислот входят углеводы, нуклеиновые кислоты и тд. и т. д.

Изосомия — одна из важнейших физиологическихФизиологический, физиологическое состояние — т.е. такое, при котором не наблюдается отклонений от нормальной работы систем и органов. констант организма, обеспечиваемых механизмами саморегуляции (см. гомеостаз). Отклонение осмотического давления от нормального физиологического уровня ≈ 0,76 — 0,81 Мн/м2 (7,6 — 8,1 ат) влечёт за собой нарушение обменных процессов между кровью и тканевой жидкостью.

ИЗОИОНИЯ относит,  постоянство ионного состава внутр. среды организма. Одиа из важных физиологии,  констант, поддерживаемых на определённом уровне механизмами саморегуляции .

65. Понятия гомеостаза. Процесс свертывания крови и его фазы. Свертывающая и противосвертывающая системы крови, как главные аппараты функциональный системы поддержания жидкого состояния крови.

Гомеостаз(ис) – это состояние внутреннего динамического равновесия природной системы, поддерживаемое регулярным возобновлением основных ее структур, вещественно-энергетического состава и постоянной функциональной саморегуляцией ее компонентов.

Гомеостаз характерен и необходим для всех природных систем. Однако чаще термин «гомеостаз» употребляется для структурного (организменного) уровня организации.

Каждый биологический объект находится в постоянном взаимодействии с окружающей средой. В течение небольших промежутков времени рассмотрения состояние биологического объекта можно считать стационарным, т.е. характеризующимся постоянством внутренней среды организма и устойчивостью основных физиологических функций. Такое состояние биологического объекта называется гомеостазом.

Гомеостаз – это способность биологического объекта к авторегуляции при изменении условий окружающей его среды.

Свертывание крови– это сложный ферментативный, цепной (каскадный), матричный процесс, сущность которого состоит в переходе растворимого белка фибриногена в нерастворимый белок фибрин. Процесс называется каскадным, так как в ходе свертывания идет последовательная цепная активация факторов свертывания крови. Процесс является матричным, так как активация факторов гемокоагуляци происходит на матрице. Матрицей служат фосфолипиды мембран разрушенных тромбоцитов и обломки клеток тканей.

Процесс свертывания крови происходит в три фазы.

Сущность первой фазы состоит в активации X-фактора свертывания крови и образовании протромбиназы. Протромбиназа– это сложный комплекс, состоящий из активного X-фактора плазмы крови, активного V-фактора плазмы крови и третьего тромбоцитарного фактора. Активация X-фактора происходит двумя способами. Деление основано на источнике матриц, на которых происходит каскад ферментативных процессов. Привнешнеммеханизме активации источником матриц является тканевый тромбопластин (фосфолипидные осколки клеточных мембран поврежденных тканей), при внутреннем– обнаженные коллагеновые волокна, фосфолипидные осколки клеточных мембран форменных элементов крови.

Сущность второй фазы – образование активного протеолитического фермента тромбина из неактивного предшественника протромбина под влиянием протромбиназы. Для осуществления этой фазы необходимы ионы Ca.

Сущность третьей фазы – переход растворимого белка плазмы крови фибриногена в нерастворимый фибрин. Эта фаза осуществляется три 3 стадии.

1. Протеолитическая. Тромбин обладает эстеразной активность и расщепляет фибриноген с образованием фибринмономеров. Катализатором этой стадии являются ионы Ca, II и IX протромбиновые факторы.

2. Физико-химическая, или полимеризационная, стадия. В ее основе лежит спонтанный самосборочный процесс, приводящий к агрегации фибрин-мономеров, который идет по принципу «бок в бок» или «конец в конец». Самосборка осуществляется путем формирования продольных и поперечных связей между фибринмономерами с образованием фибрин-полимера (фибрина-S) Волокна фибрина-S легко лизируются не только под влиянием плазмина, но и комплексных соединений, которые не обладают фибринолитической активностью.

3. Ферментативная.Происходит стабилизация фибрина в присутствии активного XIII фактора плазмы крови. Фибрин-S переходит в фибрин-I (нерастворимый фибрин). Фибрин-I прикрепляется к сосудистой стенке, образует сеть, где запутываются форменные элементы крови (эритроциты) и образуется красный кровяной тромб, который закрывает просвет поврежденного сосуда. В дальнейшем наблюдается ретракция кровяного тромба – нити фибрина сокращаются, тромб уплотняется, уменьшается в размерах, из него выдавливается сыворотка, богатая ферментом тромбином. Под влиянием тромбина фибриноген вновь переходит в фибрин, за счет этого тромб увеличивается в размерах, что способствует лучшей остановке кровотечения. Процессу ретракции тромба способствует тромбостенин – контрактивный белок кровяных пластинок и фибриноген плазмы крови. С течением времени тромб подвергается фибринолизу (или растворению). Ускорение процессов свертывания крови называется гиперкоагуляцией, а замедление – гипокоагуляцией.

  Противосвертывающая система крови.  

      Еще в 1904 году известный немецкий ученый - коагулолог  Моравиц  впервые   высказал  предположение  о наличие в организме  противосвертывающей системы,   которая сохраняет кровь в жидком  состоянии,  а  также о том что свертывающая и антисвертывающая  системы,  находятся в состоянии динамического  равновесия.

      Позже  эти  предположения  подтвердились в лаборатории,  возглавляемой  профессором Кудряшовым. В 30-е годы был получен тромбин, который  вводился  крысам с целью вызвать свертывание крови  в сосудах. Оказалось, что кровь в этом  случае вообще перестала свертываться.   Значит,  тромбин  активизировал какую-то  систему,  которая препятствует  свертыванию крови в сосудах. На основании  этого   наблюдения ,   Кудряшов  пришел  также к  выводу о наличии  противосвертывающей системы. 

      Под противосвертывающей  системой  следует понимать совокупность органов и  тканей,  которые синтезируют и   утилизируют  группу  факторов,  обеспечивающих   жидкое состояние крови,  то  есть препятствующих свертыванию крови в сосудах. К  таким органам и тканям относятся  сосудистая система,  печень,  некоторые  клетки  крови и др.  Эти органы и ткани  вырабатывают  вещества,  которые  получили  на звание  ингибиторов свертывания крови  или  естественных антикоагулянтов.  Они  вырабатываются  в  организме  постоянно,   в  отличие от искусственных,  которые  вводятся при  лечении претромбических  состояний.

      Ингибиторы свертывания крови действуют по фазам.  Предполагается, что  механизм их действия заключается либо в  разрушении, либо в связывании факторов  свертывания крови.

      В 1 фазе в качестве антикоагулянтов  срабатывают:  гепарин  (универсальный  ингибитор) и антипротромбиназы.

      Во 2 фазе срабатывают  ингибиторы  тромбина:  фибриноген,  фибрин  с   продуктами  своего распада - полипептиды,   продукты  гидролиза тромбина,  претромбин 1 и II, гепарин и естественный  антитромбин  3,  который  относится к  группе глюкозоаминогликанов.

      При некоторых патологических состояниях,  например, заболевания сердечно -  сосудистой системы,  в организме  появляются  дополнительные ингибиторы.

      Наконец, имеет место ферментативный фибринолиз, ( фибринолитическая система)  протекающий в 3 фазы.  Так, если в организме  много  образуется фибрина или тромбина,  то моментально  включается  фибринолитическая  система  и  происходит   гидролиз  фибрина. Большое значение в  сохранении жидкого состояния крови  имеет неферментативный фибринолиз,  о  котором говорилось раньше.

      По Кудряшову  различают  две противосвертывающие системы:

     I-ая имеет гуморальную  природу.  Она  срабатывает  постоянно,  осуществляя   выброс  всех  уже  перечисленных  антикоагулянтов,  исключая гепарин. II-ая - аварийная противосвертывающая система,  которая обусловлена нервными механизмами,  связанными с  функциями  определенных нервных центров. Когда в  крови накапливается угрожающее  количество фибрина или тромбина,   происходит  раздражение   соответствующих  рецепторов,  что  через   нервные  центры активизирует противосвертывающую систему.

      Как свертывающая, так и противосвертывающая система регулируются. Давно  было замечено, что под влиянием нервной  системы,  а также некоторых веществ,   происходит либо гипер-,  либо гипокоагуляция.  Например, при сильном  болевом синдроме, имеющем место при  родах,  может развиваться тромбоз в  сосудах. Под  влиянием  стрессовых   напряжений  также могут образовываться  в  сосудах тромбы.

      Свертывающая и  антисвертывающая  системы  взаимосвязаны,  находятся под  контролем как нервных,  так и гуморальных   механизмов.

      Можно предположить,  что существует функциональная система, обеспечивающая  свертывание крови, которая состоит из  воспринимающего звена, представленного  специальными хеморецепторами,  заложенными в сосудистых рефлексогенных  зонах (дуга аорты  и синокаротидная зона),   которые улавливают факторы, обеспечивающие свертывание крови.  Второе звено  функциональной системы  - это механизмы  регуляции.  К ним относятся нервный  центр, получающий  информацию с рефлексогенных зон.  Большинство ученых  предполагает, что этот нервный центр, обеспечивающий регуляцию  свертывающей системы, находится в области гипоталамуса. Эксперименты над животными показывают,  что при раздражении  задней  части  гипоталамуса  имеет  место чаще гиперкоагуляция,  а при  раздражении  передней части -  гипокоагуляция.  Эти   наблюдения  доказывают  влияние  гипоталамуса на процесс свертывания  крови,  и наличие в нем соответствующих  центров.  Через   этот  нервный  центр  осуществляется контроль за синтезом  факторов,  обеспечивающих свертывание  крови .

      К гуморальным  механизмам  относятся  вещества,  меняющие  скорость  свертывания крови.  Это прежде всего   гормоны:  АКТГ,  СТГ,  глюкокортикоиды,   ускоряющие свертывание крови;  инсулин  действует двуфазно - в течение первых 30  минут ускоряет  свертывание крови, а затем  в течение нескольких часов - замедляет.

    Минералокортикоиды (альдостерон) снижают скорость  свертывания  крови.   Половые гормоны действуют по-разному:  мужские ускоряют  свертывание крови,   женские действуют двояко:  одни из них  увеличивают  скорость  свертывание  крови  - гормоны желтого тела. другие же, замедляют (эстрогены)  

    Третье звено  - органы -  исполнители,  к которым,  прежде  всего, относится печень,  вырабатывающая факторы свертывания, а  также клетки ретикулярной системы.

     Как работает функциональная  система?  Если  концентрация  каких  - либо факторов  обеспечивающих процесс свертывания крови,  возрастает или падает, то это воспринимается хеморецепторами.  Информация   от  них  идет в центр регуляции  свертывания  крови, а затем на органы -  исполнители, и по принципу обратной  связи их  выработка или тормозится или  увеличивается.

      Регулируется также и антисвертывающая система,  обеспечивающая крови  жидкое состояние. Воспринимающее звено  этой функциональной системы находится в  сосудистых рефлексогенных зонах  и   представлено специфическими хеморецепторами,  улавливающими  концентрацию  антикоагулянтов.  Второе звено  представлено нервным центром  противосвертывающей системы.  По данным Кудряшова,   он находится в продолговатом  мозге,  что  доказывается  рядом  экспериментов.  Если,  например, выключить его такими вещества ми,  как аминозин,  метилтиурацил и другими, то кровь начинает  свертываться в сосудах.  К исполнительным звеньям относятся органы,  синтезирующие  антикоагулянты.  Это сосудистая стенка,  печень, клетки крови.       Срабатывает  функциональная система,  препятствующая  свертыванию крови следующим образом:   много антикоагулянтов  -  их  синтез тормозится, мало - возрастает (принцип обратной связи).

  Свертывающая система кровиФерментативная теория свертывания.

    Первая теория, объясняющая процесс свертывания крови работой специальных ферментов, была разработана в 1902 г. русским ученым Шмидтом. Он считал, что свертывание протекает в две фазы. В первую один из белков плазмы протромбин под влиянием освобождающихся из разрушенных при травме клеток крови, особенно тромбоцитов, ферментов (тромбокиназы) и ионов Са переходит в фермент тромбин. На второй стадии под влиянием фермента тромбина растворенный в крови фибриноген превращается в нерастворимый фибрин, который и заставляет кровь свертываться. В последние годы жизни Шмидт стал выделять в процессе гемокоагуляции уже 3 фазы: 1- образование тромбокиназы, 2- образование тромбина. 3- образование фибрина.

      Дальнейшее изучение механизмов свертывания показало, что это представление весьма схематично и не полностью отражает весь процесс. Основное заключается в том, что в организме отсутствует активная тромбокиназа, т.е. фермент, способный превратить протромбин в тромбин (по новой номенклатуре ферментов этот следует называть протромбиназой). Оказалось, что процесс образования протромбиназы очень сложен, в нем участвует целый ряд т.н. тромбогенных белков-ферментов, или тромбогенных факторов, которые, взаимодействуя в каскадном процессе, все необходимы для того, чтобы свертывание крови осуществилось нормально. Кроме того, было обнаружено, что процесс свертывания не кончается образованием фибрина, ибо одновременно начинается его разрушение. Таким образом, современная схема свертывания крови значительно сложнее Шмидтовой.

     Современная схема свертывания крови включает в себя 5 фаз, последовательно сменяющих друг друга. Фазы эти следующие: 

1.   Образование протромбиназы.

2.   Образование тромбина.

3.   Образование фибрина.

4.   Полимеризация фибрина и организация сгустка.

5.   Фибринолиз.

      За последние 50 лет было открыто множество веществ, принимающих участие в свертывании крови, белков, отсутствие которых в организме приводит к гемофилии (не свертываемости крови). Рассмотрев все эти вещества, международная конференция гемокоагулологов постановила обозначить все плазменные факторы свертывания римскими цифрами, клеточные - арабскими. Это было сделано для того, чтобы исключить путаницу в названиях. И теперь в любой стране после общепринятого в ней названия фактора (они могут быть разными) обязательно указывается номер этого фактора по международной номенклатуре. Для того, чтобы мы могли дальше рассматривать схему свертывания, давайте сначала дадим краткую характеристику этих факторов.

 

     А. Плазменные факторы свертывания.

     I. Фибрин и фибриноген. Фибрин - конечный продукт реакции свертывания крови. Свертывание фибриногена, являющееся его биологической особенностью, происходит не только под влиянием специфического фермента - тромбина, но может быть вызвано ядами некоторых змей, папаином и другими химическими веществами. В плазме содержится 2-4 г/л. Место образования - ретикулоэндотелиальная система, печень, костный мозг.

    II. Тромбин и протромбин. В циркулирующей крови в норме обнаруживаются лишь следы тромбина. Молекулярный вес его составляет половину молекулярного веса протромбина и равен 30 тыс. Неактивный предшественник тромбина - протромбин - всегда присутствует в циркулирующей крови. Это гликопротеид, в составе которого насчитывают 18 аминокислот. Некоторые исследователи полагают, что протромбин - это комплексное соединение тромбина и гепарина. В цельной крови содержится 15-20 мг% протромбина. Этого содержания в избытке хватает для того, чтобы перевести весь фибриноген крови в фибрин.

     Уровень протромбина в крови представляет собой относительно постоянную величину. Из моментов, вызывающих колебания этого уровня, следует указать на менструации (повышают), ацидоз (снижает). Прием 40% алкоголя увеличивает содержание протромбина на 65-175%  cпустя  0,5-1 час, что объясняет наклонность к тромбозам у лиц, систематически употребляющих алкоголь.

      В организме протромбин постоянно используется и одновременно синтезируется. Важную роль в его образовании в печени играет антигеморрагический витамин К. Он стимулирует деятельность печеночных клеток, синтезирующих протромбин.

     III. Тромбопластин. В крови этого фактора в активном виде нет. Он образуется при повреждении клеток крови и тканей и может быть соответственно кровяной, тканевой, эритроцитарный, тромбоцитарный. По своей структуре это фосфолипид, аналогичный фосфолипидам клеточных мембран. По тромбопластической активности ткани различных органов по убывающей располагаются в таком порядке: легкие, мышцы, сердце, почки, селезенка, мозг, печень. Источниками тромбопластина являются также женское молоко и околоплодная жидкость. Тромбопластин участвует как обязательный компонент в первой фазе свертывания крови.

     IV. Кальций ионизированный, Са++. Роль кальция в процессе свертывания крови была известна еще Шмидту. Именно тогда в качестве консерванта крови им был предложен цитрат натрия - раствор, который связывал ионы Са++ в крови и предотвращал ее свертывание. Кальций необходим не только для превращения протромбина в тромбин, но для других промежуточных этапов гемостаза, во всех фазах свертывания. Содержание ионов кальция в крови 9-12 мг%.

     V и VI. Проакцелерин и акцелерин (АС-глобулин). Образуется в печени. Участвует в первой и второй фазах свертывания, при этом количество проакцелерина падает, а акцелерина - увеличивается. По существу V является предшественником VI фактора. Активизируется тромбином и Са++. Является ускорителем (акцелератором) многих ферментативных реакций свертывания.

      VII. Проконвертин и конвертин. Этот фактор является белком, входящим в бета глобулиновую фракцию нормальной плазмы или сыворотки. Активирует тканевую протромбиназу. Для синтеза проконвертина в печени необходим витамин К. Сам фермент становится активным при контакте в поврежденными тканями.

      VIII. Антигемофилический глобулин А (АГГ-А). Участвует в образовании кровяной протромбиназы. Способен обеспечивать свертывание крови, не имевшей контакта с тканями. Отсутствие этого белка в крови является причиной развития генетически обусловленной гемофилии. Получен сейчас в сухом виде и применяется в клинике для ее лечения.

       IX. Антигемофилический глобулин В (АГГ-В, Кристмас-фактор, плазменный компонент тромбопластина). Участвует в процессе свертывания как катализатор, а также входит в состав тромбопластического комплекса крови. Способствует активации Х фактора.

      X. Фактор Коллера, Стьюард-Прауэр-фактор. Биологическая роль сводится к участию в процессах образования протромбиназы, так как он является ее основным компонентом. При свертывании утилизируется. Назван (как и все другие факторы) по именам больных, у которых была впервые обнаружена форма гемофилии, связанная с отсутствием указанного фактора в их крови.

     XI. Фактор Розенталя, плазменный предшественник тромбопластина (ППТ). Участвует в качестве ускорителя в процессе образования активной протромбиназы. Относится к бета глобулинам крови. Вступает в реакцию на первых этапах 1 фазы. Образуется в печени с участием витамина К.

    XII. Фактор контакта, Хагеман-фактор. Играет роль пускового механизма в свертывании крови. Контакт этого глобулина с чужеродной поверхностью (шероховатость стенки сосуда, поврежденные клетки т.п.) приводит к активации фактора и инициирует всю цепь процессов свертывания. Сам фактор адсорбируется на поврежденной поверхности и в кровоток не поступает, тем самым предупреждается генерализация процесса свертывания. Под влиянием адреналина (при стрессе) частично способен активизироваться прямо в кровотоке.

    XIII. Фибринстабилизатор Лаки-Лоранда. Необходим для образования окончательно нерастворимого фибрина. Это - транспептидаза, которая сшивает отдельные нити фибрина пептидными связями, способствуя его полимеризации. Активируется тромбином и Са++. Кроме плазмы есть в форменных элементах и тканях.

       Описанные 13 факторов являются общепризнанными основными компонентами, необходимыми для нормального процесса свертывания крови. Вызываемые их отсутствием различные формы кровоточивости относятся к разным видам гемофилий.

 

      В. Клеточные факторы свертывания.

      Наряду с плазменными факторами первостепенную роль в свертывании крови играют и клеточные, выделяющиеся из клеток крови. Больше всего их содержится в тромбоцитах, но есть они и в других клетках. Просто при гемокоагуляции тромбоциты разрушаются в большем количестве, чем, скажем, эритроциты или лейкоциты, поэтому наибольшее значение в свертывании имеют именно тромбоцитарные факторы. К ним относятся:

     1ф. АС-глобулин тромбоцитов. Подобен V-VI факторам крови, выполняет те же функции, ускоряя образование протромбиназы.

     2ф. Тромбин-акцелератор. Ускоряет действие тромбина.

     3ф. Тромбопластический или фосполипидный фактор. Находится в гранулах в неактивном состоянии, и может использоваться только после разрушения тромбоцитов. Активируется при контакте с кровью, необходим для образования протромбиназы.

     4ф.Антигепариновый фактор. Связывает гепарин и задерживает его антикоагулирующий эффект.

     5ф. Тромбоцитарный фибриноген. Необходим для агрегации кровяных пластинок, вязкого их метаморфоза и консолидации тромбоцитарной пробки. Находится и внутри и снаружи тромбоцита. способствует их склеиванию.

      6ф. Ретрактозим. Обеспечивает уплотнение тромба. В его составе определяют несколько субстанций, например тромбостенин +АТФ +глюкоза.

      7ф. Антифибинозилин. Тормозит фибринолиз.

      8ф. Серотонин. Вазоконстриктор. Экзогенный фактор, 90%  синтезируется в слизистой ЖКТ, остальные 10% - в тромбоцитах и ЦНС. Выделяется из клеток при их разрушении, способствует спазму мелких сосудов, те самым способствуя предотвращению кровотечения.

       Всего в тромбоцитах находят до 14 факторов, таких еще, как антитромбопластин, фибриназа, активатор плазминогена, стабилизатор АС-глобулина, фактор агрегации тромбоцитов и др.

     В других клетках крови в основном находятся эти же факторы, но заметной роли в гемокоагуляции в норме они не играют.

 

       С. Тканевые факторы свертывания

       Участвуют во всех фазах. Сюда относятся активные тромбопластические факторы, подобные III, VII,IX,XII,XIII факторам плазмы. В тканях есть активаторы V и VI факторов. Много гепарина, особенно в легких, предстательной железе, почках. Есть и антигепариновые вещества. При воспалительных и раковых заболеваниях активность их повышается. В тканях много активаторов (кинины) и ингибиторов фибринолиза. Особенно важны вещества, содержащиеся в сосудистой стенке. Все эти соединения постоянно поступают из стенок сосудов в кровь и осуществляют регуляцию свертывания. Ткани обеспечивают также и выведение продуктов свертывания из сосудов.

66. Группы крови. Резус-фактор. Переливание крови.