Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Термохимия

.doc
Скачиваний:
80
Добавлен:
07.02.2015
Размер:
48.64 Кб
Скачать

Термохимия

Раздел - химической термодинамики ,изучающий тепловые эффекты химических реакций и фазовых превращений ,называется термохимией.

В ходе химической реакции происходит перестройка энергетических уровней атомов, молекул, изменяется внутренняя энергия и, следовательно, должно наблюдаться поглощение или выделение теплоты - тепловой эффект.

В изохорно-изотермических условиях это Qv= ΔU, а в изобарно-изотермических условиях протекания реакции это Qp = ΔH.

Теплота равная термодинамическим функциям состояния сама является термодинамической функцией состояния и, следовательно, не зависит от пути процесса, а зависит только от начального и конечного состояния системы. Этот закон был установлен в 1841 г. русским акад. Г.И. Гессом.

Он лежит в основе термохимии и распространяется на все процессы, сопровождающиеся тепловыми эффектами - фазовые превращения, растворение, испарение, кристаллизация и т.д.

Поскольку в большинстве случаев химические реакции протекают при постоянном давлении, то в дальнейшем будем рассматривать изобарические условия и тепловой эффект будет являться энтальпией реакции Н. Если исходные вещества и продукты реакции находятся в стандартном состоянии, то тепловой эффект реакции называется стандартной энтальпией реакции Н0.

Стандартное состояние веществ не зависит от температуры. Если в ходе реакции теплота выделяется, т.е. энтальпия системы понижается (ΔН < 0), то реакция называется экзотермической. Реакция, протекающая с поглощением теплоты, т.е. с повышением энтальпии системы (ΔН > 0), называется эндотермической.

Тепловой эффект реакции относительно мало зависит от температуры реакции и давления, поэтому в расчетах можно использовать стандартные значения энтальпий реакций (Н0) .

Термохимия оперирует термохимическими уравнениями. В них указывают тепловой эффект, агрегатные состояния веществ и допускаются дробные коэффициенты.

С термохимическими уравнениями можно оперировать, как и с алгебраическими уравнениями.

Термохимические расчеты

Закон Гесса:

Тепловой эффект реакции зависит от природы и состояния исходных веществ и конечных продуктов, но не зависит от пути реакции.

Закон лежит в основе термохимических расчетов. Рассмотрим реакцию сгорания метана:

Эту же реакцию можно провести через стадию образования СО:

Итак, видно, тепловой эффект реакции, протекающей по двум путям, одинаков.

При термохимических расчетах для определения тепловых эффектов применяют следствия из закона Гесса.

Следствия закона Гесса:

1 следствие

Тепловой эффект химической реакции равен разности между суммами теплот (энтальпий) образования продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов в уравнении.

Тепловой эффект реакции:

bB + dD =lL + mM

рассчитывается по уравнению

ΔН1 = lΔfHL + mΔfHM – dΔfHD - bΔfHB

Для термохимических расчетов используют стандартные энтальпии образования веществ ΔfH0 – это изменение энтальпии в процессе образования 1 моля соединения в стандартном состоянии из простых веществ, тоже находящихся в стандартном состоянии в устойчивых формах и модификациях.

Стандартные энтальпии образования простых веществ, устойчивых в стандартных условиях, условно принимаются равными нулю.

Стандартные энтальпии образования веществ приведены в справочниках термодинамических величин и известны примерно для 8000 тысяч веществ, что позволяет расчетным путем установить тепловой эффект любого процесса.

2 следствие

Важно для реакций, протекающих с участием органических веществ.

Тепловой эффект реакции равен разности между суммами теплот (энтальпий) сгорания исходных веществ и продуктов реакции с учетом стехиометрических коэффициентов в уравнении реакции.

Теплота (энтальпия) сгорания – это тепловой эффект сгорания 1 моль органического вещества до СО2  и Н2О. Остальные продукты определяются конкретно для каждого случая.

Термохимические уравнения.

Теплота, высвобождаемая или поглощаемая конкретной химической реакцией, пропорциональна степени превращения реагентов, определяемой по количеству любого из расходуемых либо образующихся продуктов. Изменение внутренней энергии или энтальпии реагирующей системы определяют по химическому уравнению реакции. Например, сгорание смеси газообразных метана и кислорода описывается термохимическим уравнением

Здесь буквы в скобках обозначают агрегатные состояния веществ (газ или жидкость). Символом DH° обозначается изменение энтальпии в химическом превращении при стандартных давлении 1 атм и температуре 298 K (25° С) (знак градуса в верхнем индексе H указывает, что данная величина относится к веществам в стандартных состояниях (при p = 1 атм и T = 298 K)). Химическая формула каждого вещества в таком уравнении обозначает вполне определенное количество вещества, а именно его молекулярную массу, выраженную в граммах. Молекулярная масса получается сложением атомных масс всех элементов, входящих в формулу, с коэффициентами, равными числу атомов данного элемента в молекуле. Молекулярная масса метана равна 16,042, и, согласно предыдущему уравнению, при сгорании 16,042 г (1 моля) метана получаются продукты, энтальпия которых на 212,798 ккал меньше энтальпии реагентов. В соответствии с уравнением (5) такое количество теплоты высвобождается, когда 1 моль метана сгорает в кислороде при постоянном давлении 1 атм. Соответствующее уменьшение внутренней энергии системы в ходе реакции составляет 211,615 ккал. Разница междуDH° и DU° равна -1,183 ккал и представляет работу p (V2 - V1), совершаемую, когда 3 моля газообразных реагентов сжимаются при давлении 1 атм до 1 моля газообразного диоксида углерода и 2 молей жидкой воды.