Скачиваний:
40
Добавлен:
14.01.2021
Размер:
1.53 Mб
Скачать

3. Обратная матрица. Решение матричных уравнений

Матрица называется обратной к квадратной матрице , если

,

где - единичная матрица, имеющая тот же порядок, что и матрица .

Обратная матрица существует только в том случае, если , и ее элементы находятся по формуле

,

где - алгебраическое дополнение к элементу .

Внимание! Алгебраические дополнения, которые вычисляются к элементам строки, записываются в столбец.

Если , то матрица называется вырожденной, в противном случае невырожденной, т.е. обратная матрица существует только для невырожденных матриц.

Обозначается обратная матрица , т.е.

,

при этом ее определитель .

Для невырожденных матриц и выполнены соотношения

,

.

Введение обратной матрицы позволяет решать матричные уравнения. В конечном счете, матричные уравнения сводятся к двум простейшим уравнениям:

или .

Если матрица - квадратная, невырожденная, то эти уравнения имеют единственное решение, которое можно получить с помощью обратной матрицы. Так как при умножении матриц коммутативный закон не выполняется, они решаются разными способами.

При поиске решения первое из уравнений надо умножать на обратную матрицу слева, а второе справа, т.е.

, (5)

. (6)

Пример 5. Найти решение матричного уравнения , то есть определить матрицу , если ; .

Решение.

Решение в матричном виде определяется формулой (5), т.е. , если матрица невырожденная. Вычислим определитель матрицы :

.

Следовательно, матрица невырожденная, и для нее существует обратная матрица. Проведем вычисления, необходимые для построения обратной матрицы. Вычислим алгебраические дополнения:

Составим обратную матрицу и найдем неизвестную матрицу .

,

При вычислениях множитель рекомендуем оставлять перед матрицей и проводить умножение полученной матрицы на него на последнем этапе вычислений.

Пример 6. Найти решение матричного уравнения , если .

Решение.

Формулой (5) воспользоваться нельзя, так как матрица не квадратная, следовательно, для нее не существует обратной матрицы. Умножим обе части уравнения на транспонированную матрицу слева, получаем

.

Матрица − квадратная и, если ее определитель не равен нулю, то решение заданного уравнения имеет вид

.

Проведем вычисления:

.

Определитель полученной матрицы . Следовательно, обратная матрица к матрице существует, и можно найти матрицу :.

,

,

. ◄

Упражнения.

1. Для заданных матриц найти обратную матрицу:

а) ; б) ; в) ; г) ; д) .

Ответы:

а) ; б) ; в) ;

г) ; д) .

2. Найти неизвестную матрицу из уравнений:

а) ; б) ;

в) ;

г) ; д) .

Ответы:

а) ; б) ; в) ; г) ; д) .