Скачиваний:
40
Добавлен:
14.01.2021
Размер:
1.53 Mб
Скачать

4. Ранг матрицы

Рангом матрицы (обозначение: ) называется порядок отличного от нуля минора этой матрицы при условии, что все ее миноры более высоких порядков равны нулю. Минор наивысшего порядка, отличный от нуля, называется базисным минором или просто базисом. Матрица может иметь несколько различных базисов. Для определения базиса над матрицей производят элементарные преобразования, при которых ранг матрицы не изменяется.

К элементарным преобразованиям матрицы относятся:

- транспонирование;

- удаление или добавление строки (столбца), состоящей из нулей;

- умножение строки (столбца) на число, отличное от нуля;

- перестановка строк (столбцов);

-прибавление к элементам какой-либо строки элементов другой строки, умноженных на постоянное число (то же самое для столбцов).

Выполняя элементарные преобразования над матрицей, получаем другую матрицу, называемую эквивалентной. Переход от исходной матрицы к эквивалентной будем обозначать символом “ ”, над котором указаны действия, проводимые со строками.

Используя выше перечисленные действия, матрицу можно преобразовать к треугольному виду, что позволяет легко определить ее ранг.

Пример 7. Найти ранг матрицы .

Решение. Преобразуем матрицу:

Минор , а все миноры четвертого порядка равны нулю, т.к. содержат нулевую строку. Следовательно, . ◄

При преобразовании матрицы мы проводили операции только со строками и по определенному алгоритму. Этот метод стандартный, но не является обязательным.

С рангом матрицы связано понятие линейно зависимых (независимых) векторов. Пусть имеется система из векторов

Линейной комбинацией векторов , называется выражение

,

где - числа.

Если , то, комбинация , называется тривиальной комбинацией. Она, очевидно, равна =(0,0,..,0), где - нулевой вектор.

Векторы называются линейно независимыми, если любая нетривиальная комбинация этих векторов не равна нулевому вектору.

Векторы называются линейно зависимыми, если существует нетривиальная линейная комбинация этих векторов, равная нулевому вектору.

Если система из векторов линейно зависима, то один из них есть линейная комбинация остальных.

Ранг матрицы определяет наибольшее число линейно независимых строк (столбцов), рассматриваемых как векторы. Так в матрице из примера 7 три первых строки линейно независимы, а две другие являются их линейной комбинацией. Например, для четвертой строки справедливо: Матрица имеет и ровно три линейно независимых столбца. Например, для пятого столбца имеем

Упражнения.

1. Найти ранг матриц:

а) ; б) ;

в) ; г) .

Ответы: а) 4; б) 2; в) 4; г) 3.

2. Для матрицы примера 7 получить линейную комбинацию первых трех строк, равную пятой строке.

Ответ: , где − обозначения строк.

5. Системы линейных уравнений. Основные понятия

Системой линейных уравнений с неизвестными (линейной системой) называется система вида

(7)

где − заданные числа. Числа называются коэффициентами системы, а числа - свободными членами.

Линейная система называется однородной, если все свободные члены равны нулю, т.е.

(8)

В противном случае линейная система называется неоднородной.

Решением системы (7) называется упорядоченная совокупность чисел:

, (9)

при подстановке которых вместо каждое уравнение системы обращается в тождество.

Система, имеющая хотя бы одно решение, называется совместной, а система, не имеющая ни одного решения, - несовместной. Совместная система называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Однородная система (8) всегда совместна, так как она имеет очевидное решение: . Нулевое решение однородной системы называется тривиальным.

Две системы называются равносильными или эквивалентными, если любое решение одной из них является также решением и другой, и обратно, т.е. они имеют одно и то же множество решений. В частности, любые две несовместные системы являются эквивалентными.

Линейную систему можно записать в матричной форме. Введем матрицы:

– матрица коэффициентов при неизвестных,

- матрица-столбец свободных членов,

- матрица-столбец неизвестных.

, , .

Тогда систему (7) можно записать в виде матричного уравнения , а решение (9) в виде матрицы-столбца .

Замечание. Так как и матрицу-столбец, и матрицу-строку называют вектором, то решение системы, когда это удобнее, можно записывать в виде строки .

Матрица коэффициентов

называется основной матрицей системы.

Матрица, составленная из коэффициентов и свободных членов

называется расширенной матрицей системы.

Выражение «решить систему» означает: выяснить, совместна или несовместна система, а в случае совместности – найти все ее решения.