Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка(ответы на экз вопросы).doc
Скачиваний:
109
Добавлен:
28.11.2021
Размер:
3.25 Mб
Скачать

20.Ионная связь. Поляризация и поляризующая способность ионов. Механизм образования, свойства. Водородная и металлическая связь.

 Ионная связь. Как ни удивительно, она ничем принципиально не отличается от ковалентной связи. Движущей силой ее образования является все то же стремление атомов к октетной оболочке. Но в ряде случаев такая “октетная” оболочка может возникнуть только при передаче электронов от одного атома к другому. Поэтому ионная связь, в отличие от ковалентной, возникает только между атомами разного вида.

При образовании ионной связи атомы типичных металлов отдают электроны, а атомы типичных неметаллов принимают электроны.

В результате этих процессов атомы металлов превращаются в положительно заряженные частицы, которые называются положительными ионами, или катионами; а атомы неметаллов превращаются в отрицательные ионы – анионы.

Связь между ионами называется ионной связью.

Рассмотрим конкретный пример: реакцию между атомами натрия (Z = 11) и фтора (Z = 9). При образовании связи между ними оба элемента приобретают внешнюю электронную оболочку благородного газа неона (Z = 10). Для того, чтобы убедиться в этом, надо записать электронные формулы всех трех элементов:

Na: 1s2 2s2 2p6 3s1 F: 1s2 2s2 2p5 Ne: 1s2 2s2 2p6

В электронных формулах нам важны только электронные конфигурации внешних уровней (они подчеркнуты).

Натрий, отдав фтору свой 3s1-электрон, становится ионом Na+ и остается с заполненной 2s22p6 оболочкой, что отвечает электронной конфигурации атома неона. Точно такую же электронную конфигурацию приобретает атом F, приняв один электрон, отданный натрием. Теперь это ион F. Разумеется, при этом ионы F и Na+ продолжают оставаться все теми же элементами фтором и натрием, потому что никакие электронные переходы не могут изменить природу элемента – число протонов в его ядре.

Νа0 – 1 е = Νа+ F0 + е = F Νа+ + F = Νа F

Теперь в дополнение к ковалентной составляющей химической связи в молекуле Na+:F добавляется еще и электростатическое притяжение между ионами натрия и фтора. Это увеличивает прочность химической связи. Однако ковалентная составляющая (стремление к октету) продолжает играть большую роль и в ионных соединениях.

Порядок связи – это число обобществленных поделенных пар между двумя связанными атомами. Порядок связи выше трех не встречается Чем выше порядок связи, тем прочнее связаны между собой атомы и тем короче сама связь.

В отличие от ковалентной связи, ионная связь не обладает направленностью, Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т. е. убывает с расстоянием по одному и тому же закону в любом направлении. Поэтому взаимодействие между ионами осуществляется одинаково независимо от направления. Система из двух зарядов, одинаковых по абсолютной величине, но противоположных по знаку, создает в окружающем пространстве электрическое поле. Это означает, что два разноименных иона, притянувшиеся друг к другу, сохраняют способность электростатически взаимодействовать с другими ионами. В этом состоит еще одно различие между ионным и ковалентным типами связи: ионная связь не обладает насыщаемостью. Поэтому к данному иону может присоединиться различное число ионов противоположного знака. Это число определяется относительными размерами взаимодействующих ионов, а также тем, что силы притяжения разноименно заряженных ионов должны преобладать над силами взаимного отталкивания, действующими между ионами одного знака.

.

Рис. Поляризация иона в электрическом поле.

Неполное разделение зарядов в ионных соединениях можно объяснить взаимной поляризацией ионов, т. е. влиянием их друг на друга, которое приводит к деформации электронных оболочек ионов. Причиной поляризации всегда служит действие электрического поля (см., рис., пунктиром показана деформация электронной оболочки иона в электрическом поле), смещающего электроны и ядра атомов в противоположных направлениях. Каждый ион, будучи носителем электрического заряда, является источником электрического поля. Поэтому, взаимодействуя, противоположно заряженные ионы поляризуют друг друга.

Наибольшее смещение испытывают при поляризации электроны внешнего слоя; в первом приближении можно считать, что деформации подвергается только внешняя электронная оболочка. Однако под действием одного и того же электрического поля различные ионы деформируются в разной степени. Иначе говоря, поляризуемость различных ионов неодинакова: чем слабее связаны внешние электроны с ядром, тем легче поляризуется ион, тем сильнее он деформируется в электрическом поле. У ионов одинакового заряда, обладающих аналогичным строением внешнего электронного слоя, поляризуемость возрастает с увеличением размеров иона, так как внешние электроны удаляются все дальше от ядра, экранируются все большим числом электронных слоев и в результате слабее удерживаются ядром. Так, у ионов щелочных металлов поляризуемость возрастает в ряду

Точно так же поляризуемость ионов галогенов изменяется в следующей последовательности:

Превращение атома в положительно заряженный ион всегда приводит к уменьшению его размеров . Кроме того, избыточный положительный заряд катиона затрудняет деформацию его внешних электронных облаков.

Напротив, отрицательно заряженные ионы всегда имеют большие размеры, чем нейтральные атомы, а избыточный отрицательный заряд приводит здесь к отталкиванию электронов и, следовательно, к ослаблению их связи с ядром. По этим причинам поляризуемость анионов, как празило, значительно выше поляризуемости катионов.

Поляризующая способность ионов, т. е. их способность оказывать деформирующее воздействие на другие ионы, также зависит от заряда и размера иона. Чем больше заряд иона, тем сильнее создаваемое им электрическое поле; следовательно, наибольшей поляризующей способностью обладают многозарядные ноны. При одном и том же заряде напряженность электрического поля вблизи иона тем выше, чем меньше его размеры. Поэтому поляризующая способность ионов одинакового заряда и аналогичного электронного строения падает с увеличением ионного радиуса. Так, в ряду катионов щелочных металлов поляризующая способность изменяется в порядке, обратном порядку изменения поляризуемости:

Рис. Смещение электронного облака аниона в результате поляризации. Положение деформированного электронного облака показано пунктиром.

Рис. показывает также, что в результате поляризации электронные облака катиона и аниона оказываются неполностью разделенными и частично перекрываются, так что связь между атомами из чисто ионной превращается в сильно полярную ковалентную связь. Из этого следует, что ионную связь можно рассматривать не как особый вид связи, а как предельный случай полярной ковалентной связи.

Поляризация ионов оказывает заметное влияние на свойства образуемых ими соединений. Поскольку с усилением поляризации возрастает степень ковалентности связи, то это сказывается на диссоциации солей в водных растворах.

Металлическая связь.

Существенные сведения о природе химической связи в металлах можно получить на основании их двух характерных особенностей по сравнению с ковалентными и ионными соединениями. Металлы, во-первых, отличаются от других веществ высокой электрической проводимостью и теплопроводностью, во-вторых, в обычных условиях являются кристаллическими веществами .

Из первого характерного свойства металла следует, что по крайней мере часть электронов может передвигаться по всему объему куска металла. Из второго свойства металлов следует. Что их атомы не связаны друг с другом локализованными двухэлектронными связями. Число валентных электронов атома металла недостаточно для образования подобных связей со всеми его соседями.

Природу химической связи и характерные особенности металлов можно объяснить на примере лития следующим образом. В кристалле лития орбитали соседних атомов перекрываются. Каждый атом предоставляет на связь четыре валентные орбитали и всего лишь один валентный электрон. Значит. В кристалле металла число электронов значительно меньше числа орбиталей. Поэтому электроны могут переходить из одной орбитали в другую. Тем самым электроны принимают участие в образовании связи меду всеми атомами кристалла металла. К тому же атомы металлов характеризуются невысокой энергией ионизации – валентные электроны слабо удерживаются в атоме, т.е. легко перемещаются по всему кристаллу. Возможность перемещения электронов по кристаллу определяет электрическую проводимость металла.

Таким образом, в отличие от ковалентной и ионных соединений в металлах небольшое число электронов одновременно связывает большое число атомных ядер, а сами электроны могут перемещаться в металле. Иначе говоря, в металлах имеет место сильно делокализованная химическая связь.

Водородная связь.

Водородная связь представляет собой результат электростатического притяжения положительно поляризованных атомов водорода к отрицательному полюсу полярных молекул.

Образование водородной связи обязано ничтожно малому размеру положительно поляризованного атома водорода и его способности глубоко внедряться в электронную оболочку соседнего (ковалентно с ним не связанного отрицательно поляризованного атома). Вследствие этого при взаимодействии водородной связи наряду с электростатическим взаимодействием проявляется и донорно-акцепторное взаимодействии.

Н —F- - - - Н —F- - - - Н —F

21.Химическая кинетика. Гомогенная и гетерогенная системы. Фаза. Гомогенные и гетерогенные реакции, их скорость (зависимость скорости от механизма реакции)

22.Зависимость скорости химической реакции от температуры. Уравнение Аррениуса правило Вант-Гоффа. Энергия активации. Состояние реакционной системы (активированный комплекс переходное состояние)

23.Энергетические диаграммы состояний энергии активации прямой и обратной реакции ( экзотермический и эндотермический процесс) Влияние концентрации на смещение равновесия ( отношение Псс).

24.Катализ. Гомогенный и гетерогенный катализ. Цепные реакци

25.Зависимость скорости от концентрации (закон действующих масс)

26. Обратимые и необратимые химические реакции. Термодинамика химического равновесия. Химический потенциал.

Обратимые и необратимые реакции:

Необратимые – протекают до полного израсходования реагирующих компонентов, т.е. одного из реагирующих.

1) один из продуктов реакции удаляется из раствора в виде газа:

Zn + 4HNO3 = Zn(NO3)2 +2NO2 + 2H2O

2) один из продуктов реакции выпадает в осадок:

Ba(NO3)2 + H2SO4 = BaSO4 +2HNO3

3) образуется малодиссоциирующей вещество ( здесь вода)

КОН + НС1 = КС1 + Н2О

4) образуется комплексная соль:

СиSО4 +4 NН3 = [Си(NН3)4]SО4

5)выделение большого количества теплоты:

2Мg + О2 = 2МgО - ∆Н

6) окислительно-восстановительные реакции:

2 СrСI3 + 10 КОН + 3 Н2О2= 2К2СrО4+ 6КС1 + 8 Н2О

Обратимые – не до конца ни одно из реагирующих компонентов не расходуется полностью.

К обратимым физическим процессам относятся: растворение, испарение, плавление.

К необратимым – осаждение, конденсация, кристаллизация веществ.

В гомогенной системе реакция идет во всем объеме.

В гетерогенной системе реакция протекает только на поверхности раздела фаз.

В связи с этим скорость гомогенной реакции и скорость гетерогенной реакции определяется по-разному.

Скоростью гомогенной реакции называется количество вещества, вступающего в реакцию и образующегося при реакции за единицу времени в единице объема системы.

Скорость гетерогенной реакции называется количество вещества, вступающего в реакцию и образующегося при реакции за единицу времени на единицу площади поверхности фаз.

υгом.= ∆n/V∆t n – число молей образующегося в-ва V – объем системы.

υгет.= ∆n/S ∆t S- площадь поверхности фазы, на которой протекает растворение.

Т.о. Скоростью реакции в гомогенной системе называется изменение концентрации какого-либо из веществ, вступающих в реакцию или образующихся при реакции, происходящее за единицу времени.

υ.= -∆С/∆t т.к. реакция идет с убылью концентрации исходного вещества С12 то -∆С изменение ∆С берется с – но мгновенную скорость обозначают υ = ±dc/dt т.к. скорость является производной концентрацией по времени

Скорость химических реакций зависит в первую очередь от механизма химического превращения реагирующих веществ в продукты реакции.

По механизму – все реакции делят на простые и сложные.

Реакция называется простой, если продукт реакции образуется непосредственно после столкновения молекул реагентов. Аg+ + CI -=АgС1 – одноактные, протекающие в одну стадию.

Реакция называется сложной, если продукт реакции образуется после двух и более реакций с образованием промежуточных продуктов. Поэтому химическую кинетику можно рассматривать как науку о скоростях протекания химических превращений и механизмах этих превращений.

В любой химической реакции, выражаемой уравнением. аА + вВ + … →сС + дД

справедливо выражение ν= kСАа СВв

известное под названием закона действующих масс, установленного экспериментально К. Гульдбергом и П. Ваге (1864 – 1867) г.

Скорость химического процесса прямо пропорциональна произведению молярных концентраций реагирующих веществ взятых в степенях равных их стехиометрическим коэффициентам в уравнении реакции основной закон кинетики. Коэффициент пропорциональности в уравнении для скорости К называют константой скорости химической реакции. ЕЕ физический смысл выясняется при введении граничных условий при

СА = СВ= 1 моль/л ν= k т.е. константа скорости равна скорости химической реакции при единичных и равных значениях концентрации реагентов. Константа скорости зависит не от концентрации участвующих в процессе веществ, а от их химической природы и температуры. Константа скорости служит главной характеристикой любого химического процесса.

Факторы, влияющие на скорость химических реакций.

1.      Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H2 и N2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H2O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.

2.      Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.

Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.aA + bB + . . . ® . . .  V = k • [A]a • [B]b • . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.

Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.

Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит. 

3.      Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t1 до t2изменение скорости реакции можно рассчитать по формуле:

 

 

(t- t1) / 10

Vt2 / Vt1

= g

 

(где Vt2 и Vt1 - скорости реакции при температурах t2 и t1 соответственно; g- температурный коэффициент данной реакции).

Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса: k = A • e Ea/RT

A - постоянная, зависящая от природы реагирующих веществ, перед экспоненциальный множитель, который характеризует константу скорости при нулевой энергии активации.

R - универсальная газовая постоянная [8,314 Дж/(моль • К) = 0,082 л •  атм/(моль • К)];

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.

Число частиц, участвующих в элементарном химическом акте называют молекулярностью реакции.

Если одна из стадий процесса протекает намного медленнее, чем другие, то она и будет лимитирующей. По ней и определяется общая скорость всего процесса. Фундаментальным представлением в теории химической кинетики является понятием об активном комплексе, включающее несколько отправных моментов.

а) не любое столкновение частиц в реальном объеме приводит к их взаимодействию, а лишь такое, при котором обеспечена выгодная пространственная ориентация, максимально сближающая ядра и электронные орбитали партнеров.

б) энергия соударения частиц должна быть достаточной для разрыва прежних и образование новых связей. Такой энергией обладают не все молекулы, а лишь определенная их часть, относимая к активным.

Та избыточная энергия, которой обладают активные частицы и благодаря которой становится возможной химическая реакция, называется энергией активации.

в ) «удачно» столкнувшиеся молекулы образуют активированный переходный комплекс, т.е. временное непрочное соединение энергии, в котором ослаблены и удлинены связи, разрываемые в ходе реакции. Ослабление и удлинение связей требует затраты энергии. Следовательно, кинетическая энергия соударений должна превышать энергию активации. Энергетическая диаграмма хода химического процесса имеет вид.

 

Экзотермическая реакция

Эндотермическая реакция

 

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.

Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры. 

Еmах- кинетическая энергия соударения активных молекул. Перестройка активированного комплекса в продукты реакции высвобождает затраченную на его образование энергию вследствие создания новых химических связей.

Теория активированного комплекса объясняет влияние роста температуры на увеличение скорости реакций повышением кинетической энергии всей системы, что способствует преодолению энергетического барьера большим числом молекул.

     Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

     Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами. Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа").

Методы измерения скорости химической реакции.

Чтобы экспериментально измерить скорость химических реакций необходимо знать начальные концентрации исходных реагирующих веществ и концентрации их в различные моменты времени. Полученные данные представляют в виде графика кинетической кривой (зависимость С от τ)

Уменьшение концентрации НС1 и накопление Н2 в ходе реакции.

Zn + НС1 = ZnС12 + Н2

В зависимости от способа измерения концентрации вещества методы измерения скорости делят на химические, физические, биохимические так например в выше указанной реакции можно получить данные определения скорости по изменению концентрации НС1 Методом кислотно-основного титрования - химический метод. Или по величине водородного показателя рН с помощью рН- метра можно определить изменение СНС1- физико-химический метод кроме того количество выделяющегося Н2 можно определить в л т.е. по объему или по р – физический метод.

К физическим методам относят и спектральные методы, основанные на измерениях спектров поглощения реагентов или продуктов в ультрафиолетовой видимой инфракрасной области.

Химический потенциал.

Химическим потенциалом вещества Х в данной системе называется величина, которая определяется энергией Гиббса, приходящейся на моль этого вещества при заданных условиях:

μ (Х) = G (Х)/n (Х)

где μ (Х)- химический потенциал вещества Х Дж/моль

G (Х)- энергия Гиббса вещества Х в системе . Дж

n (Х)- количество вещества Х в системе, моль.

Если вещество Х содержится в системе в количестве n, то энергия Гиббса этого вещества равна.

G (Х)=n (Х)/ μ (Х)

Если вещество Х находится в растворе, химический потенциал этого вещества зависит от концентрации и природы растворителя. Эта зависимость носит логарифмический характер и имеет следующий вид: μ (Х)= μ0(Х) + RTℓn С(Х)

где μ (Х) – химический потенциал вещества Х, дж/моль μ0(Х) – стандартный химический потенциал не зависит от концентрации.

Химический потенциал вещества монотонно возрастает с увеличением концентрации этого вещества в системе.

При этом по мере увеличения концентрации скорость возрастания химического потенциала уменьшается.

Как следует из второго начала термодинамики при равновесии ∆G=0 получаем. ∆Gр-я= - RTℓn Кс

Кс обозначено значение Пс при химическом равновесии т.е. в Кс надо брать равновесные концентрации а обозначать [А],[В]. . . , а не произвольные концентрации Пс с(А) . с(В). . . т.е.

Кс = [С]с[Д]д/[А]а[В]в следовательно поскольку энергия Гиббса реакции ∆G0р-я при стандартных условиях величина постоянная, то и Кс для данной реакции при данных температуре и давлении тоже величина постоянная: Кс =соnst

Кс- называют константой равновесия реакции.

Это выражение есть математическая запись закона действия масс, который формулируется следующим образом. Для обратимой реакции общего вида.

аА + вВ = сС + дД при постоянных внешних условиях в равновесии отношение произведений концентраций продуктов к произведению концентраций реагентов с учетом стехиометрии есть величина постоянная, не зависящая от химического состава системы:

Кс = [С]с[Д]д/[А]а[В]в=соnst при р,Т = соnst

Энергия Гиббса реакции ∆Gр-я и константа равновесия при данных условиях связаны между собой

∆Gр-я= RTℓn Пс/ Кс

Из этого уравнения следует, что константа равновесия Кс связана со стандартной энергией Гиббса реакции соотношением.

Кс= ℓ-∆G/RT

Качественную оценку направления изучаемой реакции при заданных концентрациях легко сделать, если известна константа равновесия. Для этого по заданным концентрациям рассчитывают значение Пс и определяют отношение Псс. Если Псс<1, реакция идет в прямом направлении т.к. в соответствии с уравнением

∆Gр-я= RTℓn Пс/ Кс энергия Гиббса реакции отрицательна.

Если заданные концентрации реагентов с(А) С(В) и продуктов С(С) С(Д), таковы, что Пс < Кс ( равновесие сдвинуто влево), отношение Пс / Кс<1

ℓn Пс/ Кс<0 и ∆Gр-я< 0

В соответствии со вторым началом термодинамики это означает, что реакция должна идти самопроизвольно в прямом направлении, т.е. вправо.

Если заданные концентрации реагентов и продуктов таковы, что Пс > Кс ( равновесие сдвинуто вправо), отношение Пс / Кс>1

ℓn Пс/ Кс >0 и ∆Gр-я> 0.

В соответствии со вторым началом термодинамики реакция должна идти самопроизвольно в обратном направлении, т.е. влево.

Если при заданных концентрациях реагентов и продуктов Пс = Кс отношение Пс / Кс=1

∆Gр-я= 0 то по второму началу термодинамики имеет место равновесие.

27.Константа равновесия Кр - как важнейшая характеристика химического взаимодействия (Кр→∞,Кр→О) Смещение химического равновесия ( влияние температуры, концентрации) направление реакции, если Пс≥Кс как изменится при этом ∆Ğ.