Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

01 POWER ISLAND / 02 H2+NH3 / The_Future_of_Hydrogen-IEA-2020

.pdf
Скачиваний:
1
Добавлен:
23.06.2022
Размер:
5.64 Mб
Скачать

The Future of

Hydrogen

Seizing today’s opportunities

Report prepared by the IEA for the G20, Japan

J u n e 2 0 1 9

The Future of

Hydrogen

Seizing today’s opportunities

Report prepared by the IEA for the G20, Japan

The Future of Hydrogen

Foreword

Foreword

This is a critical year for hydrogen. It is enjoying unprecedented momentum around the world and could finally be set on a path to fulfil its longstanding potential as a clean energy solution.

To seize this opportunity, governments and companies need to be taking ambitious and realworld actions now. We are very grateful to the government of Japan for its request under its presidency of the G20 that the International Energy Agency (IEA) prepare this important and timely report.

Our study provides an extensive and independent assessment of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean, secure and affordable energy future; and how we can go about realising its potential. To help to get things moving, we have identified the most promising immediate opportunities to provide a springboard for the future.

As the world’s leading energy authority covering all fuels and all technologies, the IEA is ideally placed to help to shape global policy on hydrogen. The rigorous analysis in this report was conducted in close collaboration with governments, industry and academia.

This study on hydrogen is part of a comprehensive approach the IEA is taking to the global energy system. Last month, we published a report on the role of nuclear power in a clean energy system. We are also holding various high-level meetings to underscore the critical elements needed for a sustainable energy future – including a ministerial conference in Dublin this month on energy efficiency and another ministerial on systems integration of renewables in Berlin in October 2019.

I very much hope our report on hydrogen will inform discussions and decisions among G20 countries, as well as those among other governments and companies across the world. I hope it will help to translate hydrogen’s current momentum into real-world action that sets hydrogen firmly on the path to becoming a significant enabler of a clean, secure and affordable energy future.

Beyond this report, the IEA will remain focused on hydrogen, further expanding our expertise in order to monitor progress and provide guidance on technologies, policies and market design.

We will continue to work closely with governments and all other stakeholders to support your efforts to make the most out of hydrogen’s huge potential.

The IEA looks forward to continuing this journey together.

Dr. Fatih Birol

Executive Director

International Energy Agency

PAGE | 3

IEA. All rights reserved.

The Future of Hydrogen

Acknowledgements

Acknowledgements

This study was prepared by a cross-agency hydrogen working group drawn from all relevant directorates and offices of the IEA. The study was designed and directed by Timur Gül (Head of the Energy Technology Policy Division) and Dave Turk (Head of the Strategic Initiatives Office). The analysis and production of the report was co-ordinated by Simon Bennett and Uwe Remme.

Main contributors were Herib Blanco (transport sector), Pierpaolo Cazzola (transport sector), John Dulac (buildings sector), Hiroyuki Fukui (transport sector), Tae-Yoon Kim (oil refining), Zeynep Kurban (transmission, distribution and storage; policy), Peter Levi (industrial applications), Raimund Malischek (hydrogen supply), Christophe McGlade (transmission, distribution and storage), Kristine Petrosyan (oil refining), Cédric Philibert (hydrogen supply), Jacob Teter (transport sector) and Jabbe van Leeuwen (projects and industrial clusters). Other contributors were Thibaut Abergel, Julien Armijo, Araceli Fernandez Pales, Jacopo Tattini, Renske Schuitmaker and Tiffany Vass. Paul Lucchese (Chair of the Hydrogen Technology Collaboration Programme; Commissariat à l’énergie atomique et aux énergies alternatives (CEA) was part of the IEA team and provided expert input throughout the process. Caroline Abettan, Lisa Marie Grenier and Réka Koczka provided essential support.

Edmund Hosker carried editorial responsibility. Justin French-Brooks was the copy-editor.

The report benefited from valuable inputs, comments and feedback from other experts within the IEA, including Paul Simons, Mechthild Wörsdörfer, Laura Cozzi, Laszlo Varro, Paolo Frankl, Peter Fraser, Tim Gould and Julian Prime. Thanks also go to Tom Allen-Olivar, Jon Custer, Astrid Dumond, Christopher Gully, Jad Mouawad, Isabelle Nonain-Semelin, Robert Stone and Therese Walsh of the IEA Communication and Digital Office for their help in producing the report.

The work could not have been achieved without the support provided by: the Japanese Ministry of Economy, Trade and Industry; the Netherlands Ministry of Economic Affairs and Climate Policy; and the New Zealand Ministry of Business, Innovation and Employment.

We are particularly indebted to the expertise and guidance of the High-Level Advisory Panel for this report, chaired by Noé van Hulst (Hydrogen Envoy, Ministry of Economic Affairs & Climate

Policy, Netherlands). Members include The

Honourable Elisabeth Köstinger (Minister of

Sustainability and Tourism, Austria), Ahmad O. Al-Khowaiter, Chief Technology Officer, Saudi

Aramco), Dr. Alan Finkel (Australia’s Chief Scientist, Office of the Chief Scientist), Mikio Kizaki

(Chief Professional Engineer, Toyota Motor Corporation, Japan), Dr. Rebecca Maserumule

(Chief Director of Hydrogen and Energy, Department of Science and Technology, South Africa),

Dr. Ajay Mathur

(Director

General,

The

Energy and Resources Institute, India),

Dominique Ristori

(Director

General

Energy,

European Commission),

Dr. Sunita Satyapal

(Director Fuel Cell Technologies Office, US

Department of Energy,

United States) and

Dr. Adnan Shihab-Eldin (Director General of the Kuwait Foundation for the Advancement of Sciences, Kuwait).

PAGE | 4

IEA. All rights reserved.

The Future of Hydrogen

Acknowledgements

We appreciate the contributions of speakers and participants at the IEA High-Level Workhop on Hydrogen held in February 2019.

Many experts from outside the IEA provided input, commented on the underlying analytical work and reviewed the report. Their comments and suggestions were of great value. They include:

Jørg Aarnes

DNV

Anthy Alexiades

California Air Resources Board

Maria Belen Amunátegui Vallejo

Enagás

Everett Anderson

NEL Hydrogen

Florian Ausfelder

Dechema

Fredrik Bengtsen

Norwegian Ministry of Petroleum and

 

Energy

Bart Birbuyck

FCH-JU

Simon Blakey

IHS Markit

Klaus Bonhoff

NOW

Valérie Bouillon-Delporte

Michelin

Chris Bronsdon

Eneus Energy

Tyler Bryant

Fortis BC

Karl Buttiens

Arcelormittal

Jorgo Chatzimarkakis

Hydrogen Europe

Ping Chen

Dalian Institute of Chemical Physics

Jan Cihlar

Navigant

Roberto Cimino

Eni

Elizabeth Connelly

US Department of Energy

Anne-Sophie Corbeau

BP

Paula Coussy

IFP

Mark Crowther

Kiwa Gastek

Jostein Dahl Karlsen

IEA Gas and Oil TCP

Bill David

University of Oxford

Guillaume De Smedt

Air Liquide

Amandine Denis-Ryan

ClimateWorks Australia

Steinar Eikaas

Equinor

Masana Ezawa

Ministry of Economy, Trade and Industry,

 

Japan

Alessandro Faldi

Exxon Mobil

Pierre-Etienne Franc

Air Liquide

Sam French

Johnson Matthey

Katharina Giesecke

Permanent Mission of Austria to the OECD

Florie Gonsolin

CEFIC

Jürgen Guldner

BMW

Manfred Hafner

FEEM

Ilkka Hannula

VTT

David Hart

E4tech

Bernd Heid

McKinsey & Company

Emile Herben

Yara

Caroline Hillegeer

Engie

Katsuhiko Hirose

I2CNER

 

PAGE | 5

IEA. All rights reserved.

The Future of Hydrogen Acknowledgements

Lindsay Hitchcock

Natural Resources Canada

Théophile Hordé

Safran Group

Andreas Horn

BASF

Brigitta Huckerstein

BASF

Yuki Ishimoto

The Institute of Applied Energy

Nikolas Iwan

H2 Mobility

Emmanouil Kakaras

Mitsubishi Hitachi Power Systems Europe

Tim Karlsson

IPHE

Rob Kelly

ClimateWorks Australia

Roland Käppner

Thyssenkrupp

Phillippe Kavafyan

MHI Vestas Offshore Wind

Vanessa Koh

Ministry of Trade and Industry, Singapore

Pawel Konzal

Chevron

Angel Landa Ugarte

Iberdrola

Jonathan Leaver

Unitec Institute of Technology

Ashish Lele

Reliance Industries

Chiara Marricchi

Enel

Takeshi Matsushita

Mitsubishi Corporation International

 

(Europe)

Alicia Mignone

Ministry of Foreign Affairs, Italy

Jongsoo Mok

Hyundai Motor

Pietro Moretto

Joint Research Centre – European

 

Commission

Takashi Moriya

Honda R&D

Peter Morris

Minerals Council of Australia

Hechem Nadjar

Shell

Motohiko Nishimura

Kawasaki Heavy Industry

Mikael Nordlander

Vattenfall

Eiji Ohira

NEDO

Matt Pellow

EPRI

Joris Proost

Université catholique de Louvain

Danny Pudjianto

Imperial College London

Carlo Raucci

University Maritime Advisory Services

Alison Reeve

Department of the Environment and

 

Energy, Australia

Henk Reimink

World Steel Association

Andrew Renton

Transpower

Martin Robinius

FZ Juelich

Mark Ruth

National Renewable Energy Laboratory

Jacques Saint-Just

H2 Plus

Stanley Santos

Tata Steel Europe

Kazunari Sasaki

Kyushu University

Manfred Schuckert

Daimler

Virginie Schwarz

French Ministry of Ecology, Energy,

 

Sustainable Development and Spatial

 

Planning

Yoshiaki Shibata

The Institute of Energy Economics, Japan

Bunro Shiozawa

SIP

Tristan Smith

University College London

 

PAGE | 6

IEA. All rights reserved.

The Future of Hydrogen

Acknowledgements

Markus Steinhäusler

Voestalpine

Hideyuki Takagi

National Institute of Advanced Industrial

 

Science and Technology

Peter Taylor

Leeds University

Daniel Teichmann

Hydrogenious

Denis Thomas

Hydrogenics

Øystein Ulleberg

IFE

Fridtjof Unander

Research Council Norway

Rita Wadey

Department for Business, Energy &

 

Industrial Strategy, United Kingdom

Hans-Jörn Weddige

Thyssenkrupp

Liu Wei

China Energy Investment Corporation

Brittany Westlake

EPRI

Ad van Wijk

Delft University of Technology

Juergen Wollschlaeger

Heide Refinery

Linda Wright

NZ Hydrogen Association

Akira Yabumoto

Electric Power Development

Makoto Yasui

Chiyoda

Cheng Yibu

Sinopec Economics and Development

 

Research Institute

Rudolf Zauner

Verbund

Robert Zeller

Occidental Petroleum

Christian Zinglersen

Clean Energy Ministerial

PAGE | 7

IEA. All rights reserved.

The Future of Hydrogen

Table of contents

Table of contents

Executive summary......................................................................................................................................

13

The IEA’s 7 key recommendations to scale up hydrogen........................................................................................

16

Chapter 1: Introduction ................................................................................................................................

17

2019: A moment of unprecedented momentum for hydrogen...............................................................................

18

There are multiple mutually reinforcing reasons why this time around might well be different for hydrogen .........

22

The crucial role for governments ..........................................................................................................................

30

Hydrogen and energy: A primer............................................................................................................................

31

References ...........................................................................................................................................................

36

Chapter 2: Producing hydrogen and hydrogen-based products ........................................................................

37

Production of hydrogen today ..............................................................................................................................

38

Hydrogen from natural gas...................................................................................................................................

39

Hydrogen from water and electricity.....................................................................................................................

42

Hydrogen from coal..............................................................................................................................................

49

Hydrogen from biomass .......................................................................................................................................

51

Comparison between alternative hydrogen production pathways.........................................................................

52

Converting hydrogen to hydrogen-based fuels and feedstocks that are easier to store, transport and use.............

55

References ...........................................................................................................................................................

64

Chapter 3: Storage, transmission and distribution of hydrogen........................................................................

67

Hydrogen storage.................................................................................................................................................

69

Hydrogen transmission and distribution ...............................................................................................................

70

Total cost of delivering and storing hydrogen .......................................................................................................

81

References ...........................................................................................................................................................

85

Chapter 4: Present and potential industrial uses of hydrogen .........................................................................

89

Hydrogen in oil refining ........................................................................................................................................

91

Hydrogen in the chemical sector...........................................................................................................................

99

Hydrogen in iron and steel production ................................................................................................................

108

Hydrogen for high-temperature heat..................................................................................................................

116

References .........................................................................................................................................................

120

Chapter 5: Opportunities for hydrogen in transport, buildings and power .......................................................

123

Hydrogen as a basis for clean transport fuels ......................................................................................................

124

Hydrogen as a fuel for heat in buildings ..............................................................................................................

144

Hydrogen for power generation and electricity storage.......................................................................................

150

References .........................................................................................................................................................

160

Chapter 6: Policies to boost momentum in key value chains ..........................................................................

167

Key findings from IEA analysis ............................................................................................................................

168

Near-term opportunities......................................................................................................................................

171

1. Coastal industrial clusters: Gateways to building clean hydrogen hubs .............................................................

177

2. Existing gas infrastructure: Tapping into dependable demand.........................................................................

182

3. Fleets, freight and corridors: Make fuel cell vehicles more competitive ............................................................

185

4. The first shipping routes: Kick-start international hydrogen trade ...................................................................

188

Next steps.................................................................................................................................................

193

What next for analysts? ......................................................................................................................................

193

What next for governments and industry? ..........................................................................................................

194

References .........................................................................................................................................................

194

Abbreviations and acronyms.......................................................................................................................

197

PAGE | 8

IEA. All rights reserved.

The Future of Hydrogen

Table of contents

List of figures

 

 

Figure 1.

Global annual demand for hydrogen since 1975...................................................................................

 

18

Figure 2.

Policies directly supporting hydrogen deployment by target application .............................................

 

20

Figure 3.

Government RD&D budgets for hydrogen and fuel cells......................................................................

 

20

Figure 4.

Capacity of new projects for hydrogen production for energy and climate purposes, by technology

 

 

and start date .....................................................................................................................................

 

26

Figure 5.

A guide to the hydrogen energy value chain, from supply to end use ...................................................

 

29

Figure 6.

Today’s hydrogen value chains............................................................................................................

 

32

Figure 7.

Potential pathways for producing hydrogen and hydrogen-based products.........................................

 

39

Figure 8.

Production process of hydrogen from gas with CCUS..........................................................................

 

40

Figure 9.

Hydrogen production costs using natural gas in different regions, 2018...............................................

 

42

Figure 10.

Development of electrolyser capacity additions for energy purposes and their average unit size,

 

 

1990–2019..........................................................................................................................................

 

45

Figure 11.

Expected reduction in electrolyser CAPEX from the use of multi-stack systems...................................

 

47

Figure 12.

Future levelised cost of hydrogen production by operating hour for different electrolyser investment

 

 

costs (left) and electricity costs (right).................................................................................................

 

47

Figure 13.

Hydrogen costs from electrolysis using grid electricity ........................................................................

 

48

Figure 14.

Hydrogen costs from hybrid solar PV and onshore wind systems in the long term ...............................

 

49

Figure 15.

Hydrogen production costs in China today ..........................................................................................

 

51

Figure 16.

Hydrogen production costs for different technology options, 2030......................................................

 

52

Figure 17.

CO2 intensity of hydrogen production .................................................................................................

 

53

Figure 18.

Comparison of hydrogen production costs from electricity and natural gas with CCUS in the near term54

Figure 19.

Hydrogen production costs in different parts of the world ...................................................................

 

55

Figure 20.

Outputs and losses of different pathways for hydrogen-based fuels and feedstocks from electrolytic

 

 

hydrogen ............................................................................................................................................

 

56

Figure 21.

Number of new projects for making various hydrogen-based fuels and feedstocks from electrolytic

 

 

hydrogen ............................................................................................................................................

 

57

Figure 22.

Indicative production costs of electricity-based pathways in the near and long term ...........................

 

60

Figure 23.

Synthetic diesel and methane production costs and CO2 price penalty needed for competitiveness

 

 

with fossil diesel and natural gas in the long term................................................................................

 

62

Figure 24.

Transmission, distribution and storage elements of hydrogen value chains .........................................

 

68

Figure 25.

Tolerance of selected existing elements of the natural gas network to hydrogen blend shares by

 

 

volume ...............................................................................................................................................

 

72

Figure 26.

Current limits on hydrogen blending in natural gas networks ..............................................................

 

73

Figure 27.

Cost of hydrogen storage and transmission by pipeline and ship, and cost of hydrogen liquefaction

 

 

and conversion ...................................................................................................................................

 

78

Figure 28.

Cost of hydrogen distribution to a large centralised facility and cost of reconversion to gaseous

 

 

hydrogen ............................................................................................................................................

 

80

Figure 29.

Full cost of hydrogen delivery to the industrial sector by pipeline or by ship in 2030 for different

 

 

transmission distances........................................................................................................................

 

81

Figure 30.

Cost of delivering hydrogen or ammonia produced via electrolysis from Australia to an industrial

 

 

customer in Japan in 2030 ...................................................................................................................

 

82

Figure 31.

Comparison of delivered hydrogen costs for domestically produced and imported hydrogen for

 

 

selected trade routes in 2030 ..............................................................................................................

 

83

Figure 32.

Cost of electrolytic hydrogen imports from North Africa supplied to a hydrogen refuelling station in

 

 

Europe in 2030....................................................................................................................................

 

84

Figure 33.

Allowed sulphur content in oil products...............................................................................................

 

92

Figure 34.

Sources of hydrogen supply for refineries in selected regions, 2018.....................................................

 

93

Figure 35.

Hydrogen production costs compared to refining margins, 2018 .........................................................

 

94

Figure 36.

Future hydrogen demand in oil refining under two different pathways ................................................

 

95

Figure 37.

Hydrogen production costs from natural gas with and without CCUS by region under different carbon

 

prices, 2030 ........................................................................................................................................

 

97

Figure 38.

Hydrogen demand for ammonia and methanol production in 2018 ...................................................

 

100

Figure 39.

Hydrogen demand for primary chemical production for existing applications under current trends....

102

Figure 40.

The implications of cleaner process routes for methanol and ammonia production ...........................

 

105

Figure 41.

Costs and CO2 intensities for greenfield ammonia and methanol production in 2018 .........................

 

106

Figure 42.

Variation of ammonia and methanol production costs with fuel price in the long-term .......................

 

107

Figure 43.

Hydrogen consumption and production in the iron and steel sector today.........................................

 

109

Figure 44.

Theoretical potential for dedicated hydrogen demand for primary steel production ..........................

 

110

Figure 45.

Energy implications of fulfilling hydrogen demand via the DRI-EAF route..........................................

 

114

Figure 46.

Estimated costs of steel for selected greenfield production routes in 2018..........................................

 

115

 

PAGE | 9

 

 

IEA. All rights reserved.

The Future of Hydrogen

Table of contents

Figure 47.

Comparison of cleaner routes for steel production in the long term...................................................

 

116

Figure 48.

Demand for heat in industry under current trends ..............................................................................

 

117

Figure 49.

Economics and future potential in the context of a USD 100/tCO2 carbon price .................................

 

118

Figure 50.

Fuel cell electric cars in circulation, 2017–18 ......................................................................................

 

126

Figure 51.

Hydrogen refuelling stations and utilisation, 2018 .............................................................................

 

128

Figure 52.

Road vehicle fleet growth to 2030 under current trends.....................................................................

 

130

Figure 53.

Benchmarking hydrogen refuelling station capital costs as a function of capacity...............................

 

133

Figure 54.

Total cost of car ownership by powertrain, range and fuel ..................................................................

 

135

Figure 55.

Break-even fuel cell cost to be competitive with BEV in the long term ...............................................

 

136

Figure 56.

Current and future total cost of ownership of fuel/powertrain alternatives in long-haul trucks ............

137

Figure 57.

Current and future total cost of ownership of fuel/powertrain alternatives in a bulk carrier ship .........

141

Figure 58.

Break-even carbon price for ammonia to be competitive with fossil fuels ..........................................

 

142

Figure 59.

Spread of energy prices, performance and operational costs for gas and electric heating equipment in

 

IEA countries, 2017 ............................................................................................................................

 

147

Figure 60.

Potential hydrogen demand for heating in buildings and spread of competitive energy prices in

 

 

selected markets, 2030 .....................................................................................................................

 

148

Figure 61.

Development of global stationary fuel cell capacity, 2007–18 .............................................................

 

153

Figure 62.

Break even for hydrogen CCGT against other flexible power generation options ................................

 

157

Figure 63.

Levelised electricity generation costs for load balancing from natural gas and hydrogen ...................

 

158

Figure 64.

Levelised costs of storage as a function of discharge duration ...........................................................

 

159

Figure 65.

Today’s fuel prices in hydrogen-equivalent terms on an energy basis (left) and accounting for the

 

 

relative efficiencies to provide the same service (right).......................................................................

 

170

Figure 66.

Global distribution of existing refining, steelmaking and chemical cracking plants..............................

 

178

Figure 67.

Cost and emissions intensity of blending hydrogen into the gas network at different blend shares ....

183

Figure 68.

Routes for hydrogen trading with long-term costs compared to domestic production. ......................

 

189

List of boxes

 

 

Box 1.

Previous waves of enthusiasm for hydrogen .......................................................................................

 

19

Box 2.

How this report manages uncertainties about present and future costs and potentials ........................

 

30

Box 3.

Emerging technologies to produce hydrogen ......................................................................................

 

41

Box 4.

Thermal routes for hydrogen production – a case for nuclear?.............................................................

 

46

Box 5.

CO2 sources for synthetic hydrocarbons..............................................................................................

 

58

Box 6.

Production of hydrogen and ammonia from solar and wind in China ...................................................

 

62

Box 7.

Advantages and disadvantages of ammonia and LOHCs .....................................................................

 

75

Box 8.

Can California’s Low Carbon Fuel Standard support low-carbon hydrogen?.........................................

 

98

Box 9.

Existing and planned low-carbon ammonia and methanol production...............................................

 

103

Box 10.

Projects for low-emissions steel production .......................................................................................

 

111

Box 11.

General challenges facing the use of hydrogen for heat in industry....................................................

 

119

Box 12.

Public and private initiatives for hydrogen in road transport..............................................................

 

129

Box 13.

Policy opportunities for promoting the use of hydrogen in road transport .........................................

 

134

Box 14.

The ENE-FARM programme in Japan ................................................................................................

 

145

Box 15.

Fuel cell technologies for stationary power applications ....................................................................

 

152

Box 16.

Using fuel cells to provide back-up power and access to electricity ....................................................

 

154

Box 17.

Putting low-cost energy resources to higher-value uses .....................................................................

 

173

Box 18.

Focus on the North Sea region ..........................................................................................................

 

179

Box 19.

Realising existing government targets would drive down costs by 2030.............................................

 

186

Box 20.

Key ongoing hydrogen projects related to hydrogen trade in Asia Pacific ..........................................

 

191

List of tables

 

 

Table 1.

Selected hydrogen-related government announcements since early 2018...........................................

 

21

Table 2.

Physical properties of hydrogen ..........................................................................................................

 

35

Table 3.

Techno-economic characteristics of different electrolyser technologies ..............................................

 

44

Table 4.

Summary of hydrogen use in industrial applications and future potential ............................................

 

90

Table 5.

Potential uses of hydrogen and derived products for transport applications ......................................

 

125

Table 6.

Potential routes to use hydrogen for buildings heat supply................................................................

 

144

Table 7.

The global buildings stock and share of gas in heat production in 2017 ..............................................

 

146

Table 8.

2030 natural gas demand for heat in buildings and indicative theoretical hydrogen demand in ...............

 

 

selected regions................................................................................................................................

 

149

 

PAGE | 10

 

 

IEA. All rights reserved.