Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БТВА (окончательная редакция) для печати.docx
Скачиваний:
1077
Добавлен:
09.02.2015
Размер:
3.99 Mб
Скачать

10.5. Принципы кодирования изображений

При преобразовании цветового ТВ-сигнала из аналоговой в цифровую форму согласно рекомендации МСЭ-Р (Международного Союза Электросвязи) используются частоты дискретизации и формируются цифровые потоки, приведенные в табл.10.1.

Таблица 10.1.

Некоторые основные показатели при кодировании ТВ-сигнала

Компоненты и пара-

метры сигнала

Обозначения

Частоты дискретизации и ско-

рости передачи

Сигнал яркости

Y

13,5 МГц

(8 бит×13,5= 108 Мбит/с)

Цветоразностный

сигнал R – Y

CR

6,75 МГц

(8 бит×6,75 = 54 Мбит/с)

Цветоразностный

сигнал B- Y

CB

6,75 МГц

(8 бит×6,75 = 54 Мбит/с)

Полное число отсчётов

в секунду

S

13,5 + 6,75 + 6,75 =

=27 М-отсчётов/с

Требуемая полоса

частот канала

BN

135 МГц

Эти данные показывают, что в результате аналогово-цифрового преобразования цветового ТВ-сигнала результирующие потоки битов и требуемые для их передачи полосы частот очень велики, и потому требуется сокращение избыточности (сжатие сигнала). Общепринятым методом сжатия в настоящее время являются алгоритмы стандарта МРЕG-2, позволяющие снизить скорость передачи кодированного сигнала до 5 ÷ 10 Мбит/с.

Структурная схема кодирующего устройства показана на рис.10.13.

Рис.10.13. Структурная схема кодера изображений

В кодере MPEG-2 вначале обрабатываются фрагменты изображения

(блоки) размером 8 × 8 пикселей, несущие информацию о яркости или цветности. Яркостные блоки объединяются в макроблоки, состоящие из четырёх блоков и имеющих размер 16 × 16 пикселей. Если с каждым макроблоком связаны по одному блоку цветоразностных сигналов (СR и СB), то такой формат цветовой дискретизации обозначается 4:2:0. Если же число цветовых блоков равно четырём (по два блока для каждого из цветоразностных сигналов СR и СB), то имеет место формат цветовой дискретизации 4:2:2. Смежные макроблоки группируются вместе и образуют слайс (вырезку из данных массива).

Первичной кодированной единицей изображения является кадр, состоящий из группы слайсов, составляющих активную область изображения. Для сокращения пространственной избыточности в пределах одного кадра при кодировании создаётся I -кадр, содержащий всю информацию, необходимую для декодирования изображения. В случае сбоя в работе или помех в канале передачи I -кадры позволяют возобновить процесс правильного декодирования. Для повышения степени сжатия I -кадры передаются примерно один раз в 12 кадров. В остальное время передаются Р-кадры и В -кадры, значения которых предсказуемы: для Р -кадров – исходя из значений, предшествующих I- и Р -кадров, а для В -кадров – исходя из значений предшествующих и последующих I-кадров и P-кадров.

Чтобы декодер мог правильно восстановить информацию, требуется передавать также дополнительную служебную информацию. Для этого каждый кадр снабжается заголовком, а ряд взаимосвязанных I-, Р- и В-кадров объединяется в группу кадров (GOP), которая также снабжается заголовком. Полученная структура данных называется элементарным потоком данных. В последовательности GОР вначале следуют I- и Р-кадры, а затем В-кадры (рис.10.12), которые реконструируются декодером из ранее принятых I- и Р-кадров. Поскольку последовательность передачи кадров не совпадает с последовательностью их воспроизведения, то на уровне пакетированного элементарного потока добавляются временные метки декодирования (DTS) и представления (PTS), которые несут информацию о необходимых моментах времени декодирования и отображения кадров.

Таким образом, в процессе кодирования создаётся сложная шестиуровневая иерархическая структура: блок – макроблок – слайс – кадр – группа кадров – последовательность кадров (рис.10.13).

Рис.10.13. Иерархическая структура кодирования МРЕG-2