Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 1точка.doc
Скачиваний:
27
Добавлен:
09.02.2015
Размер:
802.82 Кб
Скачать

Взаимодействие уровней

Уровни взаимодействуют сверху вниз и снизу вверх посредством интерфейсов и могут еще взаимодействовать с таким же уровнем другой системы с помощью протоколов. Подробнее можно посмотреть на рисунке.

Эта модель содержит в себе по сути 2 различных модели:

горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах

вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине.

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной - соседние уровни обмениваются данными с использованием интерфейсов API.

Модель вос и реальные протоколы

Семиуровневая модель ВОС является теоретической, и содержит ряд недоработок. Были попытки строить сети в точном соответствии с моделью ВОС, но созданные таким образом сети были дорогими, ненадёжными и неудобными в эксплуатации. Реальные сетевые протоколы, используемые в существующих сетях, вынуждены отклоняться от неё, обеспечивая непредусмотренные возможности, поэтому привязка некоторых из них к уровням ВОС является несколько условной: некоторые протоколы занимают несколько уровней модели ВОС, функции обеспечения надёжности реализованы на нескольких уровнях модели ВОС.

Основная недоработка ВОС — непродуманный транспортный уровень. На нём ВОС позволяет обмен данными между приложениями (вводя понятие порта — идентификатора приложения), однако, возможность обмена простыми датаграммами (по типу UDP) в ВОС не предусмотрена — транспортный уровень должен образовывать соединения, обеспечивать доставку, управлять потоком и т.п. (по типу TCP). Реальные же протоколы реализуют такую возможность.

Семейство TCP/IP

Семейство TCP/IP имеет два транспортных протокола: TCP, полностью соответствующий ВОС, обеспечивающий проверку получения данных, и UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмен датаграммами между приложениями, не гарантирующий получения данных. (В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является ICMP; но они служебные (используются для внутренних нужд обеспечения работы сети), а не транспортные.)

Семейство IPX/SPX

В семействе IPX/SPX порты (называемые «сокеты» или «гнёзда») появляются в протоколе сетевого уровня IPX, обеспечивая обмен датаграммами между приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с ВОС.

В качестве адреса хоста IPX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Введение в сети с коммутацией пакетов и каналов, управление режимами коммутации.

При наличии нескольких источников информации (отправителей) и нескольких получателей можно проложить между каждой парой отдельную линию связи. Однако, такой подход становится неэффективным уже при достаточно малом количестве источников и получателей. Вместо этого обычно организуется структура, в которой число линий связи гораздо меньше и на линиях организуются каналы (с помощью уплотнения), а обмен информацией между узлами обеспечивается с помощью технологий коммутации. Одними из характеристик сети являются надёжность и живучесть. Живучесть — способность выполнять сетью свои функции в условиях неблагоприятных внешних воздействий (структурные изменения и т. п.). Надёжность — то же, что и живучесть, но с сохранением качества обслуживания.

Основные методы коммутации

Для обобщения материала рассмотрим объяснение физической сущности описанных выше методов переноса информации. Основные режимы переноса информации, используемые в сетях связи, следующие:

  • коммутация каналов,

  • многоскоростная коммутация каналов,

  • быстрая коммутация каналов,

  • быстрая коммутация пакетов,

  • коммутация пакетов или кадров.

Передача голоса в телефонии - классический пример канала. Если объединить несколько каналов в один поток, то появится необходимость управлять, или коммутировать отдельные каналы. Делается это для транспортировки данных в аналоговых сетях телефонной связи (и узкополосных цифровых сетях) на основе временного разделения потока (например, Е1). Причем для передачи информации по каждому каналу используется один или несколько фиксированных временных интервалов (тайм-слотов).

Данный метод, по сути, лишен гибкости, так как продолжительность временного интервала (количество тайм-слотов) однозначно определяет скорость передачи. Передаются в канале данные, или нет - место в потоке занято постоянно. Поэтому, коммутация каналов не лучший способ использовать магистральные сети.

Метод многоскоростной коммутации каналов был разработан для устранения недостатков предыдущего решения. В этом случае использовалось несколько каналов с различными временными интервалами и, следовательно, скоростями передачи. Однако недостатки оставались - при занятости низкоскоростного канала ни одно низкоскоростное соединение не могло быть установлено, даже при наличии не занятых более высокоскоростных каналов.

Технология быстрой коммутацией каналов, основана на тех же методах временного разделения, но соединение устанавливается только тогда, когда требуется передача данных. Хорошей иллюстрацией будет пример телефонного разговора. При коммутации и многоскоростной коммутации каналов будет установлено одно соединение на всю длительность разговора, а при быстрой коммутации будет установлено множество последовательных соединений, каждое из которых служит для передачи конкретного фрагмента речи.

Эффективность использования канала в последнем случае достаточно высокая, но минусы метода то же велики. Уже нет гарантированной задержки, так важной для передачи голоса. Да и сложность (а значит, и стоимость) программно-аппаратного комплекса увеличивается в разы. Все это приводит к тому, что на практике используется в основном простая коммутация каналов с синхронной иерархией Sonet/SDH.

Для передачи данных между компьютерными сетями, а с появлением коммутаторов и внутри локальных сетей, используются методы коммутации пакетов или кадров. И кадр, и пакет в общем случае могут иметь разную длину, и выделяются из общего массива информации только благодаря специальным последовательностям символов (флагам, заголовкам).

Классическим примером коммутации кадров является протокол Frame Relay (ретрансляция кадров). При передаче информация разных пользователей или служб передается по одному потоку (каналу), а коммутаторы выполняют функции определения маршрута данных и создания и хранения очередей пакетов/кадров при перегрузке транспортной системы.

Популярный в настоящее время "классический" Ethernet построен еще проще. Механизмы работы с очередями не предусмотрены, а вместо определения полного маршрута "заранее" используется более простая маршрутизация каждого пакета данных, причем только на пограничных узлах. Внутри сети пакеты передаются всем пользователям.

Но если рассматривать проблему с точки зрения метода переноса информации Frame Relay и Ethernet близки. И обладают общим существенным недостатком - не могут гарантировать постоянной скорости.

Тут надо сделать существенное дополнение. Современный Frame Relay имеет развитые механизмы управления скоростью, позволяющие обойти этот недостаток. То же самое можно сказать и про коммутируемый Ethernet - новое оборудование вполне надежно использует механизмы очередей, приоритизации трафика, и другие атрибуты транспортных сетей.

Примером метода быстрой коммутации пакетов является АТМ. Для достижения временной прозрачности применен метод, при котором информация всех типов сначала разбивается на пакеты малой фиксированной длины (53 байта, из них - 5 байт заголовок), называемые ячейками. Которые затем мультиплексируются в едином цифровом тракте. При этом ячейки, в зависимости от принадлежности к типу службы, могут иметь разный приоритет.

Если подходить строго, то АТМ нельзя назвать методом быстрой коммутации пакетов. Ячейка хоть и мала, но имеет вполне конечную длину, и даже один байт информации вызовет передачу всего пакета. По той же причине, нельзя сказать, что в полной мере обеспечивается гарантированная постоянная скорость. Разумеется, при реальном использовании смело можно не обращать внимания на сделанные допущения. Но для понимания сути процессов желательно про них помнить.

Материал по основам сетей передачи данных, на мой взгляд, достаточно сложен для восприятия. Но, не определившись с основами, трудно будет составить целостное понимание места и роли той или иной технологии в современном мире телекоммуникаций.

Перед переходом к следующему "тяжелому" блоку попробуем немного расслабиться, и отвлечься от технических деталей.

Коммутация пакетов на примере Frame Relay

Первой технологией, соединяющей глобальные и локальные сети, была Х.25, которая сегодня постепенно отмирает. Более прогрессивными стали появившиеся в 1984 году сети Frame Relay. При их использовании данные разделяются на кадры (фреймы) разной длины передающим устройством, причем каждый кадр содержит заголовок с адресом получателя. После передачи они собираются на приемном конце. Максимальная скорость передачи данных в ранних версиях составляла 2 Мбита. Позже у некоторых вендоров появились варианты, поддерживающие скорости до 44,725 Мбит/с, но широкого распространения, в связи с появлением ATM, они не успели получить.

Рис. 1.3. Схема сети Frame Relay

Для каждого типа трафика может задаваться свой виртуальный канал (PVC), и соответственно может быть организована своя топология соединений. Скорость регулируется параметрами CIR (минимальная информационная скорость) и AR (скорость физического канала). Для соединения узлов Frame Relay обычно используется сеть SDH, а для организации каналов менее чем Е1 - мультиплексоры TDM. На практике скорости более 128 кбит используются редко - более быстрое оборудование для соединения на "последней миле" появилось совсем недавно и успело устареть до своего широкого внедрения.

К достоинствам технологии можно отнести высокий уровень защиты данных, что в совокупности с прозрачность FR для протоколов более высокого уровня снискало ему популярность в кругах распределенных банковских и корпоративных сетей.

Лекция 4. Основные принципы, проектирование и технологии коммутации ЛВС.

На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

Дальнейшее развитие сетей шло по нескольким путям:

  • увеличение скорости,

  • внедрение сегментирования на основе коммутации,

  • объединение сетей при помощи маршрутизации.

Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

Коммутация первого уровня

Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

Коммутация второго уровня

Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

Существует 3 варианта архитектуры коммутаторов:

  • переключение (cross-bar) с буферизацией на входе,

  • самомаршрутизация (self-route) с разделяемой памятью

  • высокоскоростная шина.

1. На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

3. На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

Коммутация третьего уровня

Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:

поддержка интерфейсов и протоколов, применяемых в локальных сетях,

усеченные функции маршрутизации,

обязательная поддержка механизма виртуальных сетей,

тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

Коммутация четвертого уровня

Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 13), а также структуры пакетов IP и TCP (рисунки 14, 15), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 15), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 14) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

Лекция 5. Развитие и классификация сетевых технологий. Основы ISDN, АТМ- технологии.

Тенденции развития технологий передачи данных для территориально-распределенных сетей можно проследить на примере технологий PDH (плезиохронная цифровая иерархия) и АТМ (асинхронный режим передачи).

1980-1990 - широкое распространение TDM-оборудования, как основы для построения сетей PDH;

1991-1995 - развитие Frame Relay и АТМ;

1996-1997 - принятие концепции мультисервисных сетей АТМ;

1998-2002 - широкое распространение АТМ.

Отсюда становятся очевидными два направления:

Продолжать развитие сетей на базе TDM-оборудования и отвечать на современные требования по предоставлению телекоммуникационных услуг путем инсталляции дополнительного магистрального оборудования ('технологических заплат') и, как следствие, создание наложенных сетей.

Используя полную совместимость сетей АТМ с TDM осуществлять переход на современные технологии мультисервисных сетей с постепенным вытеснением TDM по мере амортизации устаревшего оборудования, выигрывая время на подготовку к взрывному росту спроса на услуги мультисервисных сетей в обозримом будущем.

Первый путь подразумевает продление жизни устаревающей технологии и соответствует оптимальному решению для конца 80-х - начала 90-х годов. Тем не менее, такое решение не исключает перехода на АТМ-сети, а лишь оттягивает этот переход на более позднее время, накапливая на балансе неперспективное оборудование и откладывая переоснащение сети на период массового спроса на услуги мультисервисных сетей АТМ, чем предопределяются еще большие затраты на будущие.

Второй путь соответствует современному технологическому уровню.

Рисунок 1. Использование полосы пропускания технологиями TDM и ATM

Сети TDM по своему назначению предусматривают использование мультиплексоров для предоставления фиксированной полосы пропускания для независимых услуг. Основным же достоинством технологии ATM является предоставляемая ею возможность объединять различные типы трафика в единый поток с помощью механизма статистического мультиплексирования, позволяющего более эффективно использовать полосу пропускания

К недостатку синхронных методов передачи, таких как TDM, относится то, что они не позволяют смещать блоки данных по времени для заполнения 'пустот' в канале. Это приводит к неэффективному использованию полосы пропускания. Любой же статистический мультиплексор способен 'по своему усмотрению' буферизовать данные так, чтобы уплотнить трафик разных пользователей в один общий поток (см. рис 2). Это позволяет избежать незаполненных участков и обеспечить максимально эффективное использование каналов.

На рис. 2 показано, как статистический мультиплексор ATM заполняет трафиком полосу пропускания, которая при использовании мультиплексора TDM осталась бы незадействованной. Еще раз подчеркнем, что мультиплексор ATM не резервирует тайм-слоты для входящих потоков. Потоки могут иметь лишь различные уровни приоритета на использование полосы пропускания; эти уровни определяются параметрами качества обслуживания. Отсутствие резервирования тайм-слотов означает, что данные не могут мгновенно вводиться в тракт передачи и вынуждены проводить некоторое время в буферах, ожидая появления свободного 'окна'.

Рисунок 2. Уплотнение трафика с помощью мультиплексоров АТМ и традиционного TDM

Другое узкое место технологии PDH/TDM - слабые возможности в организации служебных потоков для целей контроля и управления потоком в сети и практически полное отсутствие средств маршрутизации низовых мультиплексированных потоков, что крайне важно для использования в сетях передачи данных. В связи с отсутствием специальных средств маршрутизации, при формировании PDH-фреймов и мультифреймов увеличивается (при мультиплексировании и переключении потоков) возможность ошибки в отслеживании истории текущего переключения, а значит, увеличивается возможность потерять сведения о его истории в целом, что приводит к нарушению схемы маршрутизации всего трафика.

Frame relay (англ. «ретрансляция кадров», FR) — протокол канального уровня сетевой модели OSI. Служба коммутации пакетов Frame Relay в настоящее время широко распространена во всём мире. Максимальная скорость, допускаемая протоколом FR — 34.368 мегабит/сек (каналы E3).

Frame Relay был создан в начале 1990-х в качестве замены протоколу X.25 для быстрых надёжных каналов связи, технология FR архитектурно основывалась на X.25 и во многом сходна с этим протоколом, однако в отличие от X.25, рассчитанного на линии с достаточно высокой частотой ошибок, FR изначально ориентировался на физические линии с низкой частотой ошибок, и поэтому большая часть механизмов коррекции ошибок X.25 в состав стандарта FR не вошла. В разработке спецификации принимали участие многие организации; многочисленные поставщики поддерживают каждую из существующих реализаций, производя соответствующее аппаратное и программное обеспечение.

Frame relay обеспечивает множество независимых виртуальных каналов (Permanent Virtual Circuits, PVC) в одной линии связи, идентифицируемых в FR-сети по идентификаторам подключения к соединению (Data Link Connection Identifier, DLCI), но не имеет средств коррекции и восстановления. Вместо средств управления потоком включает функции извещения о перегрузках в сети. Возможно назначение минимальной гарантированной скорости (CIR) для каждого виртуального канала.

В основном применяется при построении территориально распределённых корпоративных сетей, а также в составе решений, связанных с обеспечением гарантированной пропускной способности канала передачи данных (VoIP, видеоконференции и т. п.).

X.25 — семейство протоколов канального уровня сетевой модели OSI. Предназначалось для организации WAN на основе телефонных сетей с линиями с достаточно высокой частотой ошибок, поэтому содержит развитые механизмы коррекции ошибок. Ориентирован на работу с установлением соединений. Исторически является предшественником протокола Frame Relay.

X.25 обеспечивает множество независимых виртуальных каналов (Permanent Virtual Circuits, PVC и Switched Virtual Circuits, SVC) в одной линии связи, идентифицируемых в X.25-сети по идентификаторам подключения к соединению (идентификаторы логического канала (Logical Channel Identifyer, LCI) или номера логического канала (Logical Channel Number, LCN).

Благодаря надёжности протокола и его работе поверх телефонных сетей общего пользования X.25 широко использовался как в корпоративных сетях, так и во всемирных специализированных сетях предоставления услуг, таких как SWIFT (банковская платёжная система) и SITA (фр. Société Internationale de Télécommunications Aéronautiques — система информационного обслуживания воздушного транспорта), однако в настоящее время X.25 вытесняется другими технологиями канального уровня (Frame Relay, ISDN, ATM) и протоколом IP, оставаясь, однако, достаточно распространённым в странах и территориях с неразвитой телекоммуникационной инфраструктурой.

ATM (англ. Asynchronous Transfer Mode — асинхронный способ передачи данных) — сетевая технология, основанная на передаче данных в виде ячеек (cell) фиксированного размера (53 байта), из которых 5 байтов используется под заголовок.

Ячейки данных, используемые в ATM, меньше в сравнении с элементами данных, которые используются в других технологиях. Небольшой, постоянный размер ячейки, используемый в ATM, позволяет:

  • передавать данные по одним и тем же физическим каналам, причём как при низких, так и при высоких скоростях;

  • работать с постоянными и переменными потоками данных;

  • интегрировать любые виды информации: тексты, речь, изображения, видеофильмы;

  • поддерживать соединения типа точка-точка, точка-многоточка, многоточка-многоточка.

Технология ATM предполагает межсетевое взаимодействие на трёх уровнях.

Для передачи данных от отправителя к получателю в сети ATM создаются виртуальные каналы, VC (англ. Virtual Circuit), которые бывают двух видов:

постоянный виртуальный канал, PVC (Permanent Virtual Circuit), который создаётся между двумя точками и существует в течение длительного времени, даже в отсутствие данных для передачи;

коммутируемый виртуальный канал, SVC (Switched Virtual Circuit), который создаётся между двумя точками непосредственно перед передачей данных и разрывается после окончания сеанса связи.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]