Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Введение.docx
Скачиваний:
38
Добавлен:
13.02.2015
Размер:
99.8 Кб
Скачать

Средства измерений прямого преобразования.

Структурная схема прибора  прямого  преобразования  показана  на рас. 3.5, где ИП1, ИП2,…,ИПn -звенья; х, х1, х2,..., хn - информативные параметры сигналов. 

Как видно из рис. 3.5, входной сигнал х последовательно претерпевает несколько преобразований и в итоге на выходе получается сигнал хn . Для измерительного прибора сигнал xn получается в форме, доступной для непосредственного восприятия наблюдателем, например, в виде отклонения указателя отсчетного устройства. Для измерительного преобразователя сигналхn получается в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения. Примером электроизмерительного прибора, имеющего структурную схему прямого преобразования, может быть амперметр для измерения больших постоянных токов. В этом приборе измеряемый ток вначале с помощью шунта преобразуется в падение напряжения на шунте, затем в малый ток, который измеряется измерительным

7

механизмом, т.е. преобразуется в отклонение указателя.

Чувствительность (коэффициент преобразования) средства измерений, имеющего структурную схему прямого преобразования:

kkkkn .                      (3.2)

При нелинейной функции преобразования чувствительность и коэффициенты преобразования зависят от входного сигнала. Мультипликативная погрешность возникает при изменении коэффициентов преобразования. С течением времени и под действием внешних факторов коэффициенты k1, k2, k3 ,¼, kn могут изменяться соответственно на Dk1, Dk2, Dk3 ,¼, Dkn. При достаточно малых изменениях этих коэффициентов можно пренебречь членами второго и большего порядков малости,  тогда относительное изменение чувствительности                                                .                                          (3.3) Изменение чувствительности приводит к изменению выходного сигнала на Dxn = (S + DSx-S×x=DS×x . Этому изменению выходного сигнала соответствует абсолютная погрешность измерения входной величины                                                      .                                                 (3.4) Как видно из выражения (3.4), погрешность, вызванная изменением чувствительности, является мультипликативной. Относительная мультипликативная погрешность измерения  dь = DS/S . Аддитивная погрешность вызывается дрейфом «нуля» звеньев, наложением помех на полезный сигнал и т.д., приводящих к смещению графика характеристики преобразования i-гo звена на ±Dx0i; Аддитивную погрешность можно найти, введя на структурной схеме после соответствующих звеньев дополнительные внешние сигналы Dx01 , Dx02, …, Dx0n , равные смещениям характеристик преобразования звеньев.

8

Для оценки влияния этих дополнительных сигналов пересчитаем (приведем) их ко входу структурной схемы. Результирующее действие всех дополнительных сигналов равно действию следующего дополнительного сигнала на входе:                    .          

Средства измерений уравновешивающего преобразования. Структурная схема средства измерений уравновешивающего преобразования показана на рис. 3.7.

Структурная схема такого прибора содержит две цепи  - цепь прямого преобразования и цепь обратного преобразования, т.е. в приборе имеется общая отрицательная обратная связь с выхода на вход.  Для цепи обратного преобразования (обратной связи) x¢m = xn×b1×b2×…×bm = xn× b  ,                                     где b  - коэффициент преобразования цепи обратного преобразования; b1, b2, …, bm - коэффициенты преобразования звеньев обратной связи. На входе цепи прямого преобразования в узле СУ происходит сравнение (компенсация) входного сигнала х и выходного сигнала цепи обратного преобразования х'm  и при этом на выходе СУ получается  разностный  сигнал Dх = х—х'm . При подаче на вход сигнала х выходной сигнал xn , а следовательно, и х'm , будут возрастать до тех пор, пока х и х'm не станут равны. При этом по значению xn можно судить об измеряемой величине. Средства измерений, имеющие такую структурную схему, могут работать как с полной,

9

так и с неполной компенсацией. При полной компенсации (астатическое преобразование) в установившемся режиме                                      Dх = х—х'm =0 .                                                    (3.7) Это возможно в тех устройствах, у которых в цепи прямого преобразования предусмотрено интегрирующее звено с характеристикой преобразования . Примером такого звена является электродвигатель, для которого угол поворота вала определяется приложенным напряжением и временем. В этом случае, получим xn = x/(b1×b2…bm) = x/b .                                       (3.8)         Таким образом, в момент компенсации сигнал на выходе средства измерений пропорционален входному сигналу и не зависит от коэффициента преобразования цепи прямого преобразования. Чувствительность (коэффициент преобразования)                                          .                                         (3.9) Мультипликативная относительная погрешность, обусловленная нестабильностью коэффициентов преобразования звеньев, при достаточно малых изменениях этих коэффициентов

     .                      (3.10) Как видно из этого выражения, относительная мультипликативная погрешность обусловлена только относительным изменением коэффициента преобразования цепи обратного преобразования. Аддитивная погрешность в средствах измерений с полной компенсацией практически обусловливается порогом чувствительности звеньев, расположенных до интегрирующего звена, и порогом чувствительности самого интегрирующего звена. Под порогом чувствительности звена понимается то наименьшее изменение входного сигнала, которое способно вызвать появление сигнала на выходе звена. Порог

10

чувствительности имеют, например, электродвигатели, часто применяемые в рассматриваемых устройствах. Для реальных звеньев график характеристики преобразования может иметь вид, как показано на рис.3.8, где  ± Dх i-1  - порог чувствительности[1].