Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

лекции по биологии

.pdf
Скачиваний:
1270
Добавлен:
13.02.2015
Размер:
2.01 Mб
Скачать

2.Гомотрансплантацию (аллотрансплантацию).

3.Гетеротрансплантацию (ксенотрансплантацию)

При аутотрансплантации донор и реципиент – один и тот же организм, транс-

плантат берут с одного места и пересаживают на другое. Этот вид пересадки широко используют в восстановительной хирургии. Например, при обширных повреждениях лица используется кожа руки или живота того же больного. Путем аутотрансплантации создают искусственный пищевод, прямую кишку.

При аллоили гомотрансплантации донор и реципиент – различные особи одного и того же вида. У человека и высших животных успех гомотрансплантации зависит от антигенной совместимости тканей донора и реципиента. Если ткани донора содержат чужеродные реципиенту вещества – антигены, то они вызывают образование в организме реципиента иммунных антител. Антитела реципиента реагируют с антигенами трансплантата и вызывают изменения структуры и функции антигена и чужеродной ткани, отторжения, значит, ткани иммунологически несовместимы. Примером аллотрансплантации у человека – переливание крови.

При гетеротрансплантации донор и реципиент – животные разных видов. У беспозвоночных возможно приживление. У высших животных при пересадках такого рода трансплантат, как правило, рассасывается.

В настоящее время ученые и медики работают над проблемой подавления иммунной реакции отторжения, преодоления иммунологической несовместимости. Большое значение имеет иммунологическая толерантность (терпимость) к чужеродным клеткам.

В настоящее время существует несколько способов, которые позволяют предотвращать отторжение трансплантата:

-подбор наиболее совместимого донора

-облучение рентгеновскими лучами иммунной системы костного мозга и лимфатических тканей. Облучение подавляет образование лимфоцитов и таким образом замедляется процесс отторжения.

-использование иммунодепрессантов, т.е. веществ которые не просто подавляли иммунитет, а избирательно, специфически подавляли именно иммунитет трансплантационный, сохраняя функцию защиты от инфекций. В настоящее время ведется поиск специфических иммунодепрессантов. Есть примеры жизни больных с пересаженными почками, печенью, поджелудочной железы.

Гомеостаз в живых организмах

Гомеостазом - называется свойство живых существ поддерживать постоянство своей внутренней среды, несмотря на изменчивость факторов окружающей среды

Несмотря на значительные колебания среды, живой организм сохраняет себя как отдельную биологическую единицу, которая отличается постоянством морфологии, фи- зико-химическим составом клеток, тканевой жидкости, крови и т.д.

Выделяют различные виды гомеостаза: -структурный; -иммунный; -генетический; -тепловой; -газовый;

-химического состава.

Основу гомеостаза составляют механизмы, которые сложились в процессе эволюции и поэтому закреплены генетически. Контролируют гомеостаз две системы – нервная и эндокринная. Относительно быстрые изменения состояния организма обеспечиваются

40

нервной системой. Гормональное влияние распространяется на клетки и органы медленнее, но и сохраняется обычно более длительное время.

Примером ответа организма на воздействие неблагоприятных жизненных условий, при котором возникает угроза нарушения гомеостаза, служит состояние стресса (стресс-реакция).

В развитии стресс-реакции выделяют три стадии:

1)состояние тревоги. Происходит изменение состояния большинства систем (мышечной, дыхательной, пищеварительной, сердечно-сосудистой), органов чувств, уровня кровяного давления.

2)мобилизация защитных механизмов, повышение сопротивляемости организма. Информация о нарушении гомеостаза поступает в гипоталамическую область головного мозга, где синтезируется особый класс гормональных веществ. Они воздействуют на клетки передней доли гипофиза, выделяется адренокортикотропный гормон (АКТГ), который усиливает синтез стероидных гормонов клетками надпочечников. Стероидные гормоны, воздействуя на клетки различных органов, изменяют их функциональное состояние и повышают защитные силы организма. Эти две стадии соответ-

ствуют сохранению состояния гомеостаза.

3) истощение защитных механизмов. Эта стадия наступает при чрезмерных по силе или продолжительности воздействиях и заключается в срыве механизмов гомеостаза и развитии патологических изменений.

Биологические ритмы. Хронобиология

Биологические ритмы – регулярно повторяющиеся изменения интенсивности биологических процессов. Биологические ритмы обнаружены у всех живых существ, они наследственно закреплены и являются факторами адаптации организмов.

Биоритмы подразделяются на физиологические и экологические. К физиологическим относят, например, ритмы давления, биения сердца, частота дыхания.

К экологическим относятся суточные, сезонные (годовые), приливные и лунные ритмы.

Суточным колебания подвержены, например, ритм клеточных делений; содержания различных веществ в тканях и органах: глюкозы, натрия и калия в крови, гормонов роста и др. Например, многие животные впадают в спячку или совершают миграции задолго до наступления холодов.

Наука о биологических ритмах (хронобиология) имеет большое значение для медицины. Обнаружены биологические ритмы чувствительности организмов к действию факторов химической природы (лекарственным средствам). Это стало основой для развития хронофармакологии – изучения действия лекарств в зависимости от времени введения.

Физиологические показатели одного и того же человека, полученные утром, в полдень и ночью, существенно отличаются. Стоматологи, например, знают, что чувствительность зубов к боли максимальна к 18 часам, поэтому все наиболее болезненные процедуры они стремятся выполнить утром.

У каждого человека в течение дня работоспособность меняется. Установлено, что период активности это с 10 до 12 и с 16 до 18 часов. К 14 часам и вечернее время работоспособность снижается. Одни люди успешно справляются с работой с утра и в пер-

41

вой половине дня (их называют «жаворонками»), другие вечером и даже ночью (их называют «совы»).

Хронобиология разрабатывает рекомендации режима активности человека, связанных с учетом психологических особенностей «сов», «жаворонков», сменой часовых поясов, работой в ночное время.

Новые направления в хронобиологии, а именно: хронодиагностика, хронотерапия и хронопрофилактика учитывают биологические ритмы при профилактике, диагностике и лечении заболеваний.

Лекция 8

Паразитизм и его формы

План

1.Взаимодействие живых организмов в биотическом сообществе.

2.Паразитизм.

3.Происхождение паразитизма.

4.Взаимодествия паразита и хозяина.

5.Распространение паразитизма.

42

Взаимодействие живых организмов в биотическом сообществе

Любой вид организованных существ и любая популяция какого либо вида не существует изолированно от других существ, а образуют сложное и противоречивое единство называемое биотическим сообществом. Биотическое сообщество представляет собой совокупность популяций, населяющих определѐнную территорию или биотоп. Оно функционирует как единое целое благодаря взаимосвязанным метаболическим превращениям.

Сообщества состоят из продуцентов, микроконсументов и макроконсументов и редуцентов. В пределах этих групп могут доминировать один или несколько видов, оказывая существенное влияние на среду обитания других видов (дубовая роща, сосновая роща).

Можно выделить следующие взаимоотношения между организмами: отрицательные: конкуренция за пищу, свет, местообитание и т.д., внутривидовые и межвидовые: хищничество – поедание жертвы, предварительно убитой; паразитизм – жизнь за счѐт другого и различные виды положительного сожительства (симбиоз):

комменсализм – сожительство выгодное для одного вида и безразличное для другого. Например, в каждой раковине моллюсков есть «незваные гости», использующие объедки хозяина, акула и рыба-прилипала. У человека кишечная флора, использующая неиспользованные остатки пищи.

мутуализм – взаимовыгодное сожительство, без которого ни тот ни другой обойтись не могут. Например, термиты и жгутиковые простейшие, перерабатывающие целлюлозу в их кишечном тракте. Молодые термиты заражают себя, слизывая испражнения взрослых особей или, например, микориза грибов и высшие растения.

Особое место в медицине занимает изучение одного из отрицательных видов сожительства – паразитизма.

Паразитизм

Паразитизм – это существование одного вида за счѐт другого, используя его как среду обитания или источника питания или то и другое и нанося ему (т.е. хозяину) определенный вред. Но не такой, чтобы вызвать немедленную смерть хозяина. Паразит, как правило, вызывает аллергическую реакцию у хозяина, так как является чужеродным в антигенном отношении.

Паразитов подразделяют: 1) по месту обитания на:

эктопаразитов – паразитирующих на покровах тела (клопы, комары), эндопаразитов - внутри организма (кишечные гельминты), внутриклеточных – токсоплазма, плазмодии, тканевых – ришта,

кровяных – кровяные сосальщики, филярии (нитчатки). 2)по длительности пребывания:

временные – кровососущие (комары, блохи, слепни, москиты), постоянные – аскариды, острицы, власоглав.

3)в зависимости от цикла развития Паразитами могут быть личинки или половозрелые особи

Хозяева паразитов делятся на основных – где паразит проходит половую стадию развития (например, человек для широкого лентеца), промежуточных – где паразит прохо-

43

дит бесполые стадии развития (человек для эхинококка). В жизненном цикле некоторых паразитов может быть дополнительный хозяин (муравей для ланцетовидного сосальщика, хищные рыбы для широкого лентеца).

Происхождение паразитизма

Большая часть эктопаразитов происходит из хищников. Среди клопов, виды рода Reduvius являются свободно живущими хищниками, поедающими насекомых. Однако, Reduvius personatus , наряду с таким же хищничеством, может иногда нападать на человека и сосать у него кровь. Постельный же клоп перешѐл всецело на питание кровью. Среди пиявок – европейская пиявка является свободно живущим хищником, который пожирает мелких беспозвоночных. Конская пиявка в отношении мелких животных ведѐт себя также, а в отношении крупных – ограничивается временным нападением и сосанием крови. Цейлонская пиявка время от времени нападает на свои жертвы для сосания крови, не прибегая уже к иным способам питания. Рыбья пиявка, в общем всю жизнь проводит на теле рыбы, но легко перебирается с одной на другую, а в период размножения покидает хозяина, откладывая коконы на дно водоѐмов. Наконец, пиявка встречающаяся на пантоподах, даже яйца свои откладывает на тело хозяина.

Такая форма паразитизма как кровепаразитизм-явление вторичное, возникшее из кишечного паразитизма. Tripanosoma жила в кишечнике насекомых. Когда эти насекомые стали питаться кровью позвоночных, Tripanosoma стала попадать во время акта сосания в кровь. Кровь оказалась ещѐ более питательной средой, чем содержимое кишечника и они стали в крови размножаться, не утратив способности жить в кишечнике.

Паразитизм внутренний в ряде случаев произошѐл от эктопаразитизма. Например, у пеликана клещ пухоед мигрировал с перьев этой птицы в еѐ громадный подклювный мешок и стал питаться кровью.

Основная масса случаев внутреннего паразитизма, а именно, случаи паразитизма кишечного, представляют собой первичное явление, развивавшееся в результате случайного заноса в пищеварительную систему яиц или покоящихся стадий различных свободно живущих организмов. Так, среди нематод Aloionema appendiculatum ведѐт свободно живущий образ жизни. Однако, еѐ личинки могут попасть в кишечник слизня и там достигнуть вдвое большей величины. Половозрелости же достигают лишь покинув слизня и откладывают 500-600 яиц вместо 30-40.

Взаимодействия паразита и хозяина

Между хозяином и паразитом существует сложное и противоречивое взаимодействие: паразит, находясь в хозяине и питаясь за счѐт него, вызывает изменения его гомеостаза, выражающееся в аллергизации развития иммунитета той или иной силы и в большинстве случаев развития патологии. Смерть хозяина не выгодна для паразита, так как может привести к гибели и самого паразита. Поэтому эволюционно сложились между ними такие взаимоотношения, когда хозяин, несмотря на снижение в большинстве случаев жизнеспособности может в течение сравнительно длительного времени сохранять качество жизни.

Паразиты оказывают на хозяина:

1) механическое воздействие, повреждая те или иные органы (давление эхинококкового пузыря на печѐночную ткань, протыкание стенок мочевого пузыря яйцами кровяного сосальщика, закупорка протоков);

44

2)отнимают пищу у хозяина (аскарида);

3)отравляющее действие продуктов метаболизма, особенно эндопаразитов на организм хозяина;

4)токсины и антигены вызывают образование антитоксинов и антител (слюна эктопаразитов вызывает специфические аллергические воспалительные реакции на коже); 5)эндопаразиты выделяют ферменты, которые мешают фагоцитам хозяина влиять на паразита; 6)паразиты могут выступать и как переносчики других паразитарных заболеваний;

7)могут быть косвенной причиной развития различных инфекций (изъязвление кишечника при дизентерийном амѐбиазе-образует ворота инфекции).

Организм хозяина отвечает на присутствие в нем чужеродного в антигенном отношении паразита развитием:

1)клеточных реакций {лимфоциты и другие иммунокомпонентные клетки устремляются к месту расположения паразита (трихина, дизентерийная амѐба) и нападают на паразита}; 2)тканевых реакций (защитная соединительнотканная капсула вокруг трихины, цистицерка и т.д.);

3)развитием гуморальных реакций (образование антител).

Переход той или иной особи к паразитическому существованию также ведѐт к целому ряду изменений приспособительного характера (атрофия органов дыхания у круглых червей, кишечника у ленточных червей), развитие специальных приспособлений, направленных на удержание в теле хозяина (присоски сосальщиков, крючья свиного цепня, ботрии широкого лентеца). У паразитов сильно гипертрофируется система органов размножения, так как шансы на выживание их во внешней среде резко снижаются (самка аскариды откладывает около 250 000 яиц в сутки).

Распространение паразитизма

Организм хозяина представляет для паразита среду первого порядка, а среда второго порядка – это окружающая среда, организм паразита сообщается непосредственно с внешней средой через организм хозяина.

Живые организмы создали возможность возникновения и эволюции паразитизма: жить за счѐт другого, не убивая его сразу, оказалось выгодным для паразита. В настоящее время насчитывается около 9000 видов паразитических простейших, 2000 видов цестод, около 7000 видов трематод, 11000 видов нематод, около 100000 видов членистоногих, не считая многих бактерий, кокков, спирилл, спирохет, грибов, вирусов и других, также ведущих паразитическое существование.

Исходя из этого, почти все живущие на Земле виды организмов имеют своих паразитов, видимо, близки к истине утверждения о том, что на нашей планете больше паразитов, чем их хозяев.

Перед паразитологами стоит задача полной ликвидации паразитарных и в первую очередь глистных инвазий (учение К.И.Скрябина о девастации).

Ликвидирована в нашей стране малярия, ришта, резко снижена заболеваемость свиным и бычьим цепнями, а также кишечными паразитами.

Лекция 9

Генетика как наука. Основные закономерности наследова-

45

ния

План

1.Генетика как наука. Основные понятия генетики.

2.Моногибридное скрещивание. Правило единообразия гибридов первого поколения. 3.Моногибридное скрещивание. Правило расщепления.

4.Ди- и полигибридное скрещивание. Правило независимого наследования признаков. 5.Анализирующее скрещивание.

Генетика как наука. Основные понятия генетики

Генетика изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живых организмов.

Наследственностью называется свойство организмов повторять в ряду поколений сходные признаки. Функциональной единицей наследственности является ген, который реализуется в признак.

Изменчивость – это способность организмов приобретать новые признаки – различия в пределах вида.

Наследование - это способ передачи наследственной информации, который может измениться в зависимости от форм размножения.

Основные закономерности наследования были открыты чешским ботаником Грегором Менделем в 1865 году, хотя в то время они не получили признания. Лишь в 1900 году те же закономерности вновь установили независимо друг от друга Гуго де Фриз в Голландии, Корренс в Германии и Чермак в Австрии.

Изучая закономерности наследования, Г. Мендель использовал гибридологический метод, суть которого состоит в следующем:

-скрещивая организмы между собой, он выделял и анализировал наследование по отдельным контрастным или альтернативным признакам (цвет желтый или зеленый),

-был проведен точный количественный учет наследования каждого альтернативного признака в ряду последующих поколений.

-было прослежено не только первое поколение, но и последующие по этому признаку. Скрещивание, в котором родительские особи анализируется по одной альтернатив-

ной паре признаков, называется моногибридным, по двум - дигибридным, по трем и более - полигибридным.

Основные понятия генетики.

В настоящее время установлено, что гены, отвечающие за признаки, находятся в хромосомах. Хромосомы в соматических клетках организма парные или гомологичные. Поэтому за развитие одного признака отвечают два гена. Гены, определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, называют аллельными. Если в обеих гомологичных хромосомах, в одних и тех же локусах, находятся идентичные аллели гена, то такой организм называется гомозиготным. В потомстве таких организмов не происходит расщепления признаков.

Организм, у которого гомологичные хромосомы несут различные аллели того или иного гена, называется гетерозиготным. В потомстве такие организмы обнаруживают расщепление признаков.

Явление преобладания признака получило название доминирования, а преобладающий признак называется доминантным. Признак, который подавляется, называется ре-

цессивным.

Гены принято обозначать буквами латинского алфавита. Гены, относящиеся к одной аллельной паре, обозначают одной и той же буквой, но аллель доминантного состояния признака - прописной, а рецессивного - строчной. Так в зиготе и в соматических клет-

46

ках всегда два аллеля одного и того же гена, поэтому генотипическую формулу по любому признаку необходимо записывать двумя буквами.

АА – особь, гомозиготная по доминантному признаку аа – особь, гомозиготная по рецессивному признаку Аа – особь гетерозиготная

Рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный – как в гомозиготном, так и в гетерозиготном состоянии.

Совокупность всех генов в организме называется генотип. Совокупность всех признаков и свойств организма называется фенотип. Фенотип зависит от генотипа и от факторов окружающей среды.

Моногибридное скрещивание

Опыты Мендель проводил на горохе. При скрещивании сортов гороха, имеющих желтые и зеленые семена (скрещивались гомозиготные организмы или чистые линии), все потомство (т.е. гибриды первого поколения) оказалось с желтыми семенами. Противоположный признак (зеленые семена) как бы исчезает. Обнаруженная закономер-

ность получила название правило единообразия (доминирования) гибридов первого по-

коления (или первый закон Г.Менделя).

Опыты по скрещиванию записывают в виде схем: А – ген желтой окраски

а– ген зеленой окраски

Р- (parents – родители) F - (filii – дети)

Р ♀АА х ♂аа

жз

G (А)

(а)

F1

Аа – 100% желтые

Итак, все гибриды первого поколения оказываются однородными: гетерозиготными по генотипу и доминантными по фенотипу.

Таким образом, первое правило (закон) Менделя единообразия гибридов первого поколения можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу

.

Правило расщепления. Второй закон Менделя

Если скрестить гибриды первого поколения между собой, во втором поколении появляются особи, как с доминантными, так и с рецессивными признаками, т.е. возникает расщепление в определенном численном соотношении. В опытах с горохом желтых семян оказывается в три раза больше, чем зеленых. Эта закономерность получила название второго закона (правило) Менделя, или закона (правило) расщепления.

Р ♀ Аа х ♂ Аа

жж

G (А) (а)

(А) (а)

F2 АА; Аа, Аа; аа

желтые

зеленые

Расщепление по фенотипу 3:1, по генотипу 1АА:2Аа:1аа Второй закон (правило) Менделя: при скрещивании двух гетерозиготных особей,

анализируемых по одной альтернативной паре признаков (т.е. гибридов), в потомстве ожидается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

47

Ди- и полигибридное скрещивание. Третий закон Менделя

При дигибридном скрещивании родительские организмы анализируются по двум парам альтернативных признаков. Мендель изучал такие признаки как окраску семян и их форму. При скрещивании гороха с желтыми и гладкими семенами с горохом, имеющим зеленые и морщинистые семена, в первом поколении все потомство оказалось однородным, проявились только доминантные признаки – желтый цвет и гладкая форма. Следовательно, как и при моногибридном скрещивании здесь имело место правило единообразия гибридов первого поколения или правило доминирования.

А – ген желтого цвета а – ген зеленого цвета В – ген гладкой формы

в – ген морщинистой формы

Р ♀ААВВ

х ♂аавв

ж. гл.

з. морщ.

G (АВ)

(ав)

F1

АаВв – желтые гладкие

При скрещивании гибридов первого поколения между собой произошло расщепление по фенотипу:

Р ♀ АаВв

х ♂АаВв

 

 

 

 

 

 

 

 

 

 

 

АВ

Ав

аВ

ав

АВ

 

ААВВ-ж.гл

ААВв-ж.гл

АаВВ-ж.гл

АаВв-ж.гл.

Ав

 

ААВв-ж.гл

ААвв-ж.м.

АаВв-ж.гл

Аавв-ж.м

аВ

 

АаВВ-ж.гл

АаВв-ж.гл

ааВВ-з.гл.

ааВв-з.гл

ав

 

АаВв-ж.гл

Аавв-ж.м

ааВв-з.гл

аавв-з.м

9 частей – желтых гладких

3 части – желтых морщинистых

3 части – зеленых гладких

1 часть – зеленых морщинистых Из этого скрещивания видно, что во втором поколении имелись не только особи с

сочетанием признаков родителей, но и особи с новыми комбинациями признаков. Кроме того, Мендель обнаружил, что каждая пара признаков (цвет и форма) дала

расщепление приблизительно в отношении 3:1, то есть как при моногибридном скрещивании. Отсюда был сделан вывод, что каждая пара альтернативных признаков при ди- и полигибридном скрещивании наследуется независимо друг от друга.

Третье правило или третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей отличающихся двумя (или более) парами альтернативных признаков, во втором поколении наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

Кроме законов, Мендель сформулировал две гипотезы: факторальную и гипотезу «чистоты гамет», с помощью которых он попытался объяснить установленные закономерности.

48

Факторальная гипотеза указывает на то, что в клетках содержится фактор (ген), который и несет признак. Родители передают потомкам не признаки, а эти факторы.

Гипотеза «чистоты гамет»: организм по каждому признаку несет два наследственных фактора (один от отца, второй от матери). Эти наследственные факторы, находясь в клетках, не сливаются друг с другом и при формировании гамет расходятся в разные гаметы.

Анализирующее скрещивание

Рецессивный аллель проявляется только в гомозиготном состоянии. Поэтому о генотипе организма проявляющего рецессивный признак можно судить по фенотипу.

Гомозиготная и гетерозиготная особи, проявляющие доминантные признаки по фенотипу неотличимы. Для определения генотипа производят анализирующее скрещивание и узнают генотип родителей по потомству.

Анализирующее скрещивание заключается в том, что особь, генотип которой не ясен, но должен быть выяснен скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна

Р ♀

АА

х

♂ аа

G

(А)

 

(а)

F1

 

Аа

Р ♀

Аа

х

♂ аа

G

(А) (а)

(а)

F2

 

Аа; аа

 

 

1:1

Как видно из схемы, при анализирующем скрещивании для потомства гетерозиготной особи характерно расщепление 1:1.

49