Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по пф / ОБЩАЯ НОЗОЛОГИЯ лекции.docx
Скачиваний:
149
Добавлен:
22.02.2015
Размер:
166.73 Кб
Скачать

Патофизиология воспаления

Воспаление - наиболее часто встречающееся болезненное явление. Многие заболевания, сопровождающиеся воспалением, заканчиваются на -ит (миокардит, гломерулонефрит, гепатит). Некоторые заболевания, составной частью которых является воспаление, имеют свои названия, например, пневмония.

лат. - inflammatio, гр. - flogosis - гореть

Воспаление - это типовой патологический процесс, характеризующийся развитием альтеративно-дистрофических, сосудисто-экссудативных и пролиферативных реакций на болезнетворные воздействия.

Клинические признаки воспаления: краснота (rubor), принухлость (tumor), жар (calor), боль (dolor), нарушение функции (functio laese). Эти признаки характерны для острого воспалительного процесса, развивающегося на наружных поверхностях организма (кожа, слизистые). При воспалении внутренних органов ряд признаков, например, жар и краснота, могут отсутствовать.

Причины развития воспаления

Воспаление по своему происхождению является полиэтиологическим процессом. Любой чрезвычайный раздражитель может вызвать воспаление. Это - механические (удар, грубая пища, сдавление), физические (ультрафиолетовые лучи, высокая температура, лучевая энергия), химические (кислоты, щелочи, метаболиты), биологические (инфекционные агенты), психогенные факторы. Воспаление может возникнуть по типу условного рефлекса.

Механизмы развития воспаления

Все механизмы развития воспаления делятся на 2 группы:

1. Местные (гуморально-клеточные)

2. Общие (нейрогормональные)

Местные механизмы характеризуются сосудисто-тканевыми реакциями 1) альтеративно-дистрофическими, 2) сосудисто-экссудативными и 3) пролиферативными.

Развитие этих реакций происходит в гистионе. Это - функционально-структурная единица, включающая соединительную ткань (фибробласты, мезенхимальную ткань), микроциркуляторное русло и нервные рецепторы. Гистион в первую очередь отвечает на действие раздражителя.

Воспалительный агент вызывает раздражение или повреждение ткани. Характер проявления (раздражение или повреждение) зависит, с одной стороны, от силы агента и длительности, с другой стороны, от реактивности ткани, где развивается воспаление.

Раздражение

Альтеративно-

дистрофические

реакции

Сосудисто-

Воспалительный агент экссудативные

реакции

Пролиферативные

реакции

Повреждение

Альтеративно-дистрофические процессы

Альтерация (alterare - изменять, повреждать) - это повреждение клетки, ткани. Различают первичную и вторичную альтерацию. Первичная альтерация возникает при непосредственном действии повреждающего фактора, самого воспалительного агента (например, ожог). Вторичная альтерация является следствием первичной альтерации и возникает в результате выхода из клеток лизосомальных ферментов, медиаторов воспаления и метаболитов. Эти факторы формируют воспалительный процесс даже после окончания действия чрезвычайного раздражителя. Таким образом, вторичная альтеорация является реакцией ткани на уже вызванное вредным фактором повреждение.

В процессе первичной и вторичной альтерации высвобождается большое количество медиаторов, которые отвечают за возникновение и поддержание воспалительного процесса.

Все медиаторы воспаления делятся на гуморальные и клеточные

МЕДИАТОРЫ

Гуморальные Клеточные

Комплемент Кинины Ф-.XII Вазоактив Эйкоза- Нейропептиды

С-3, С-5 ные амины ноиды

Гистамин, ПГ Е2 Вещество Р

серотонин

Лейкотриены

Цитокины,

Нейро- лимфокины

медиаторы

Тромбоксан А2

Адреналин,

ацетилхолин

Гуморальные медиаторы: производные комплемента представлены различными белками, их более 20. Непосредственное отношение к воспалению имеют его фрагменты - С-3, С-5. Они повышают сосудистую проницаемость, ститмулируют фагоцитоз. Источником комплемента является плазма крови.

Кинины - вазоактивные пептиды, являются компонентами "кинин-калликреиновой системы". Среди них большую роль играет брадикинин. Он способствует расширению сосудов, повышает их проницаемость, влияет на нейрорецепторы и оказывает болевой эффект. Активируются кинины фактором Хагемана.

Гуморальные факторы способствуют выработке клеточных медиаторов. К ним относятся вазоактивные амины (гистамин, серотонин), нейтропептиды (вещество Р), нейромедиаторы (ацетилхолин, адреналин), эйкозаноиды - производные арахидоновой кислоты.

Большую роль в воспалении играет гистамин. Он освобождается из тучных клеток под влиянием воспалительного агента и вызывает расширение сосудов, повышение сосудистой проницаемости, падение артериального давления. Серотонин обладает теми же свойствами, но активность его ниже, чем у гистамина.

Они вырабатываются в лейкоцитах, в частности, в моноцитах и макрофагах. Среди эйкозаноидов особая роль принадлежит ПГ Е2 . Он способствует повышению чувствительности нейрорецепторов к брадикинину, вызывает развитие отека, повышает температуру участка воспаления, повышает сосудистую проницаемость.

ПГ Е2

Гиперемия То Увеличение Повышение чувстви-

сосудистой тельности нейрорецеп-

проницаемости торов к брадикинину

Развитие отека Боль

Лейкотриены: к ним относятся цитокины, монокины, лимфокины. Они повышают сосудистую проницаемость, способствуют выработке Тромбоксана А2 , участвующего в тромбообразовании. Нейропептиды - вещество Р - участвует в формировании боли. Нейромедиаторы: ацетилхолин вызывает расширение сосудов, повышение сосудистой проницаемости.

Наряду с альтеративными процессами в тканях при воспалении наблюдаются дистрофические расстройства.

Дистрофические нарушения

Дистрофия - нарушение обмена веществ. Первоначальные расстройства обмена веществ характеризуются стимуляцией метаболических процессов. Усиливается потребление кислорода. Затем потребление кислорода снижается, уменьшается интенсивность метаболических процессов, особенно в центре воспалительного очага. Нарушаются все виды обмена веществ. Происходит распад гликогена до глюкозы. При дефиците кислорода нарушается ее окисление, накапливаются кислые метаболиты (лактат, пируват), развивается ацидоз повреждения. Развитию ацидоза способствует накопление Н+ -ионов - развивается гипер-Н+ -иония. Происходит распад жиров до жирных кислот, что вызывает при нарушении их окисления накопление кетоновых тел. Белковый обмен: наблюдается распад белков до аминокислот, крупнодисперсных белков до мелкодисперсных - явление гиперонкии. При нарушении водно-солевого обмена из клетки выходят ионы К+ и поступают ионы Na+ . Развивается гиперосмия и, как следствие, отек. Внеклеточные ионы К+ раздражают нейрорецепторы и вызывают боль.

Сосудистые реакции

В основе сосудистых реакций лежит действие медиаторов воспаления.

В начальных стадиях происходит кратковременный спазм сосудов (ишемия) под влиянием норадреналина, освобождающегося за счет действия воспалительного агента. Ишемия кратковременная, и вскоре под влиянием медиаторов и метаболитов происходит расширение сосудистого русла. Наступает 2 стадия - стадия артериальной гиперемии. Она характеризуется покраснением участка воспаления, повышением температуры за счет усиленного притока крови в очаг воспаления, расширением микрососудов, ускорением кровотока. При прогрессировании воспалительного процесса артериальная гиперемия сменяется венозной гиперемией.

На этой стадии кровоток замедляется, развивается цианоз, снижается температура участка воспаления. Развитию венозной гиперемии способствует сгущение крови вследствие повышения сосудистой проницаемости под влиянием гистамина, происходит образование тромбов. Большую роль в тромбообразовании играет фактор Хагемана (ф-XII). Альтерация активирует фактор Хагемана, что приводит к микротромбозу. Это ограничивает очаг воспаления.

Альтерация ф. XII микротромбоз

плазминоген плазмин фибринолиз

В дальнейшем процессы альтерации усиливаются и на определенной стадии воспаления фактор Хагемана, влияя на систему "плазминоген-плазмин", способствует активации фибринолиза, что вызывает расплавление тромба и способствует распространению, генерализации процесса.

Венозная гиперемия сначала приводит к развитию предстатического состояния, когда наблюдается маятникообразный ток крови, а затем развивается стаз - остановка циркуляции крови в микрососудах. Образуются конгломераты из форменных элементов крови. Одним из характерных симптомов стаза является феномен слайджа (Sludge - болото, тина), когда эритроциты теряют свою форму, образуют гомогенную массу и закупоривают сосуд.

На стадии венозной гиперемии развиваются явления экссудации - выход жидкой части крови из сосудов в ткань. Вместе с плазмой крови выходят электролиты, белки.

Механизмы экссудации обусловлены следующими факторами: 1) повышением проницаемости сосудов в результате воздействия медиаторов воспаления, в частности, гистамина; 2) увеличением кровяного давления в сосудах очага воспаления, 3) возрастанием осмотического и онкотического давления в воспаленной ткани в результате дистрофических процессов. Все эти факторы способствуют переходу жидкой части крови в межклеточное пространство и образованию экссудата.

Существует несколько видов экссудатов, различающихся по своим физико-химическим свойствам. Наличие умеренного количества альбуминов (3-5%), электролитов, клеток характерно для серозного экссудата. В транссудате количество протеинов меньше 2%. Наличие в экссудате форменных элементов (разрушенных лейкоцитов, остатков тканевых элементов), наличие метаболитов, бактерий характерно для гнойного экссудата. Если в экссудат поступают эритроциты, то он становится геморрагическим. Фибринозный экссудат характеризуется большим содержанием фибриногена, что является результатом значительного повышения проницаемости сосудистой стенки. Гнилостный экссудат характеризуется наличием продуктов гниения при попадании в экссудат патогенных анаэробов. Существуют и смешанные формы экссудата.

Одновременно с экссудацией начинается эмиграция лейкоцитов - выход лейкоцитов из сосудов в ткань. В основе эмиграции лейкоцитов лежит явление хемотаксиса под влиянием хематтрактантов. К ним относятся фрагменты комплемента, калликреин, фрагменты коллагена, лимфокины, цитокины, продукты распада гранулоцитов, катионные белки. В результате хемотаксиса в ткани выходят сначала нейтрофилы, а затем макрофаги (моноциты).Эти клетки образуют воспалительный инфильтрат, который ограничивает очаг воспаления от здоровых тканей и играет положительную роль: при инфекционном воспалении не происходит распространения инфекции и область воспаления очищается от микроорганизмов.

В механизмах эмиграции лейкоцитов различают 3 стадии:

1. Краевое стояние лейкоцитов

2. Прохождение лейкоцита через сосудистую стенку

3. Движение лейкоцита в очаг воспаления

Краевое стояние лейкоцитов

Лейкоциты выходят из осевого тока крови в плазматический. Этому способствует нарушение реологических свойств крови, замедление тока крови. Возрастают адгезивные свойства лейкоцитов и эндотелиальных клеток, происходит прилипание лейкоцитов к стенке сосуда. Это связано с фиксацией на эндотелии хематтрактантов, взаимодействующих со специфическими рецепторами на лейкоцитах. Определенное значение придается снижению отрицательного заряда лейкоцитов, что создает условиях для образования между лейкоцитом и эндотелием кальциевых мостиков.

Прохождение лейкоцита через сосудистую стенку

Лейкоциты образуют псевдоподии, которые проникают в межэндотелиальные щели. Способствуют переходу лейкоцитов в ткани повышение сосудистой проницаемости. Этот процесс требует затраты энергии и осуществляется с повышенным потреблением кислорода и ионов Са2+ и Mg2+ . В процессе перехода из сосудов в ткань лейкоцит выделяет лизосомальные ферменты, изменяющие коллоидные свойства базальной мембраны (обратимый процесс перехода из геля в золь, что обеспечивает повышенную проходимость для лейкоцитов. Вышедшие из сосуда лейкоциты устремляются в очаг воспаления.

Движение лейкоцита в очаг воспаления

Движение лейкоцита определяется явлением хемотаксиса, наличием хемотаксических веществ (хематтрактантов). В этом процессе также играют роль электрокинетическяе явления, обусловленные изменением заряда лейкоцитов и тканей вследствие развития ацидоза. Сначала в очаге воспаления преобладают нейтрофилы, а затем моноциты (макрофаги), которые участвуют в фагоцитозе.

Пролиферация

Пролиферация - это разрастание клеточных элементов в очаге воспаления. Процессы пролиферации происходят одновременно с другими процессами. Основную роль в механизмах пролиферации играют фибробласты, которые активируются кининами. Фибробласты способствуют образованию коллагеновых волокон, которые образуют рубец (при остром воспалении) или грануляционную ткань (при хроническом воспалении).

Кинины Фибробласты Коллагеновые

волокна

Грануляционная Рубец

ткань

При хроническом воспалении преобладают пролиферативные изменения, образуются гранулемы, например, в слизистой полости рта.

В процессе пролиферации принимают участие различные медиаторы.

Стимуляторами пролиферации являются:

1. Трофогены - они представляют собой макромолекулы, образуются в нейронах, тканевых клетках; обеспечивают трофическую функцию.

2. Фактор роста - он освобождается при раздражении пневмоцитов, клеток эпидермального происхождения; он обеспечивает эпителизацию тканей.

3. Раневые гормоны - освобождаются при альтерации, стимулируют митотическую активность фибробластов.

4. цГМФ - стимулирует процессы пролиферации.

Ингибиторами пролиферации являются кейлоны. Они освобождаются из макрофагов, тормозят деление клеток и разрастание тканей.

Большую роль в процессах развития воспаления играет реактивность организма. У новорожденных еще окончательно не сформировалась реактивность, поэтому воспаление у них протекает генерализованно, по типу пупочного сепсиса. Это связано с неспособностью организма локализовать воспалительный процесс. В пожилом возрасте вследствие ослабления защитных и приспособительных реакций развитие воспаления принимает хронический характер.

Наряду с местными механизмами большую роль в развитии воспаления играют общие механизмы, связанные с включением нейрогенных и гуморальных факторов.

Общие механизмы развития воспаления

Общий механизм включает в себя нейрорецепторы, афферентное звено, ЦНС, эфферентное звено (нейрогенное и гуморальное).

Альтеративно-

дистрофические

процессы

Афф. Эфф. Сосудисто-

Воспалительный НР ЦНС экссудативные

агент процессы

Гормоны Пролиферативные

процессы

1. Раздражение рецепторов под влиянием воспалительного агента и медиаторов повышает внутриклеточный потенциал. Часто воспалительный процесс развивается по рефлекторному механизму, с участием нейрорецепторов. Блокада их снижает активность воспаления.

2. Афферентная (чувствительная) иннервация. Повреждение афферентного звена приводит к нарушению нервной трофики и вызывает дистрофические изменения в органах и тканях.

3. ЦНС: включение ее в процесс связано с нервно-эмоциональным стрессом. При стрессах реагируют внутренние органы. Невротические состояния очень часто вызывают воспалительный процесс в виде соматических заболеваний (язвенная болезнь желудка и другие процессы). В основе их развития лежит нарушение психосоматических отношений

4. Эфферентная иннервация. Эфферентное звено представлено нервными и гуморальными звеньями. Возбуждение симпатической нервной системы вызывает снижение воспалительного процесса ( СНС цАМФ медиаторы воспаления). Активация парасимпатической нервной системы стимулирует развитие воспаления ( ПСНС цГМФ медиаторы воспаления).

Эфферентное звено представлено также гормонами. Различают: 1) провоспалительные и 2) противовоспалительные гормоны. К провоспалительным гормонам относят СТГ, минералокортикоиды, тироксин, гормон паращитовидных желез. К противовоспалительным гормонам относятся АКТГ, глюкокортикоиды, инсулин, половые гормоны.

Значение воспаления для организма

С позиций биологической теории И.И.Мечникова в основе воспаления лежит фагоцитоз. Поэтому воспаление необходимо рассматривать как защитную, положительную, реакцию организма.

Особенности воспаления в челюстно-лицевой области

Воспалительные процессы в тканях ротовой полости протекают по разному в связи с различным строением этих тканей, различной иннервацией и особенностями кровоснабжения. Вследствие обильного кровоснабжения ротовой полости при воспалении преобладает стадия сосудисто-экссудативных расстройств, развивается отек слизистой полости рта. Довольно характерным для воспаления в полости рта является развитие абсцессов, флегмон мягких тканей. Это обусловлено распространением воспалительного процесса по клетчатке, межмышечным и межфасциальным пространствам. Тяжелыми формами воспалительного процесса являются периостит и остеомиелит челюсти.

В связи с обильной иннервацией все воспалительные процессы вызывают сильную боль.

Часто воспаление в ротовой полости заканчивается пролиферативными процессами (образование гранулем и фиброзных капсул при пульпитах, развитие склероза при пародонтозе). Возникающий пародонтит сопровождается явлениями ацидоза, расстройством микроциркуляции, нарушениями в микрососудах, что приводит к склерозу - пародонтозу.

ПАТОФИЗИОЛОГИЯ АЛЛЕРГИИ

Аллергические заболевания занимают до 30% заболеваемости населения и частота их постоянно растет. Среди заболеваний чаще всего встречаются ринит, крапивница, бронхиальная астма.

Allos - иной, ergon - действие

Следовательно, аллергия - это иное действие.

Аллергия - это типовой патологический процесс, проявляющийся высокой чувствительностью организма к повторному действию раздражителей антигенной природы. Кроме понятия "аллергия", существуют термины "сенсибилизация", "гиперчувствительность". Вещества, вызывающие аллергию, носят название аллергенов.

Аллергия относится к патологии иммунитета, отражающей новую форму чувствительности организма.

Иммунитет

Аллерген ФСИО

Аллергия

В развитии аллергии выделяют 3 периода:

1. Сенсибилизация. Она возникает после 1-го контакта с аллергеном и ничем не проявляется. В этот период повышается чувствительность организма.

2. Период клинических проявлений. Он характеризуется сокращением гладкой мускулатуры, повышением секреции эндокринных желез, болевыми реакциями, развитием лихорадки, воспаления, шока.

3. Период гипосенсибилизации - период снижения повышенной чувствительности.

Этиология аллергии

Этиология аллергии включает:

1. Чрезвычайный раздражитель

2 Условия

3. Входные ворота

4. Реактивность организма

Чрезвычайный раздражитель

Это - антигены, чужеродные вещества. Они обладают слабой чувствительностью, слабой антигенностью. Они могут быть полными и неполными (гаптенами). Полные антигены - это макромолекулярные соединения животного, растительного, пищевого происхождения, аутоантигены. Неполные антигены - это гаптены. К ним относятся лекарственные препараты.

Классификация антигенов

АЛЛЕРГЕНЫ

Эндогенные Экзогенные

Неинфекционные Инфекционные

лекарственные бытовые растительные пищевые

пенициллин, домашняя травы, цветы, коровье моло- яды насекомых-

лечебные пыль, шерсть пыльца и сок, ко, белки кури-

сыворотки, домашних растений ных яиц, рыба, возбудители

сульфанил- животных цитрусовые,

амиды, йод, клещи, пух, мед, кофе, бактерии, ви-

витамины моющие мясо, орехи русы, грибы и

группы В средства, их фрагменты

анилиновые

красители

2. Условия: высокая и низкая температура, ионизирующая радиация, ультрафиолетовые лучи, электромагнитные поля, экологические факторы (озон, окислы азота), характер питания (избыточная нагрузка углеводами и белками).

3. Входные ворота. При попадании растительных аллергенов через дыхательные пути чаще развиваются кашель, бронхиальная астма. При попадании аллергена через желудочно-кишечный тракт наблюдаются проявления в виде воспаления. Если аллерген поступает парентерально, например, в кровь может развиваться анафилактический шок. Если аллерген поступает через кожу, могут развиваться дерматиты, сыпь, вплоть до экземы.

4.Реактивность организма.

Чаще аллергическими заболеваниями страдают люди с аллергической конституцией. В целом иммунологическая реактивность у человека определяется состоянием ЦНС, эндокринной системы, генетическими механизмами.

Роль нервной системы. Повышенная чувствительность к аллергическим раздражителям связана с невротизацией. Способствует развитию аллергии активация холинергической иннервации (активация ПСНС).

Холинэстераза Ca2+ цГМФ

Эндокринная система. Преобладание проаллергических гормонов - СТГ, тироксина, минералокортикоидов, ТТГ - формируют аллергию. Такие гормоны как АКТГ, глюкокортикоиды, половые гормоны являются противоаллергическими.

Роль физиологической системы иммунного ответа

Аллергическая предрасположенность обусловлена мутациями в геноме. Физиологическая система иммунного ответа находится под регуляторным влиянием генома. Основную роль играют гены главной системы гистосовместимости (HLA) (6-я пара хромосом), которая способна

HLA Ir Is различить свое и чужое. Эта система регулирует ген иммун-

Тх Тс ного ответа (Ir) и ген иммунной супрессии (Is). Эти гены

формируют степень чувствительности Тх и Тс. При мутаци- ях в основном страдает функция Тс). Это меняет активность иммунного ответа. Повышается чувствительность организма, нарушается иммунитет.

ЦНС, гормоны, генетические механизмы формируют возрастную реактивность. У детей первых трех лет преобладает аллергия на пищевые раздражители. Проявляется в виде экссудативного диатеза, дерматита. В возрасте 3-7 лет наблюдаются проявления со стороны дыхательной системы - аллергический бронхит, бронхиальная астма. До 30 лет проявления аллергии стихают. После 30 лет наблюдается обострение аллергических реакций со стороны дыхательной системы или кожных проявлений.

Патофизиологические механизмы развития аллергических реакций

Эти механизмы делятся на:

1. Повышенную чувствительность замедленного типа (ПЧЗТ)

2. Повышенную чувствительность немедленного типа (ПЧНТ)

ПЧЗТ: эти реакции развиваются через несколько часов или чуток (до 3-х суток). Это - клеточные реакции, это Т-зависимая аллергия.

Аллергические реакции немедленного типа развиваются через несколько минут. Это - гуморальные реакции, В-зависимая аллергия. Смешанные реакции характерны для аутоаллергии.

ПЧЗТ - это клеточно-опосредованные реакции, IY типа

В развитии этих реакций выделяют следующие стадии:

1. Патоиммунную

2. Патохимическую

3. Патофизиологическую стадию

Патоиммунная стадия

Антиген Макрофаг Тл Тсенс. Тп

Тц

ИЛ-1 ИЛ-2 Тх

Тх Тс

Тт

Антиген реагирует с макрофагом (А-клеткой). Неполный фагоцитоз макрофагом антигена приводит к тому, что частицы аллергена выходят на поверхность клетки А. Они взаимодействуют с Тх при участии интерлейкина-1. Активация Тх усиливает его влияние на Тл через интерлейкин-2. Тл становятся сенсибилизированными (Т-эффекторами). Т-эффекторы - это антигенчувствительные лимфоциты, имеющие на своей поверхности специфические рецепторы.

Т-эффекторы дают клон клеток: 1)Т-памяти - это долгоживущие клетки. Они определяют аллергическую конституцию и способны отреагировать на антиген. 2) Т-цитотоксические лимфоциты. Они повреждают любую клетку, где есть антиген (даже при первичном попадании антигена). При повторном поступлении антигена Т-памяти превращаются в Тц-лимфоциты. 3) При первичном воздействии антигена в организме образуются также Т-хелперы, Т-супрессоры и Т-толерантные лимфоциты. Т-супрессоры тормозят развитие аллергии, а Т-толерантные лимфоциты участвуют в механизмах гипосенсибилизации (снижении повышенной чувствительности). В развитии аллергии основную роль играют Тц. Они взаимодействуют с соматическими клетками, на которых фиксирован антиген. Происходит возбуждение клетки и под влиянием лизосомальных ферментов происходит разрушение клетки. Это взаимодействие приводит к развитию патохимической стадии. При первичном действии антигена продолжительность периода сенсибилизации 3-5 дней.

Патохимическая стадия

В результате взаимодействия Тц с соматической клеткой освобождаются медиаторы аллергии. Они освобождаются из лимфоцитов и в реакциях замедленного типа называются лимфокинами.

1. Фактор переноса (трансферфактор). Он обладает сенсибилизирующим влиянием на интактные лимфоциты. Этот фактор играет роль при переливании крови.

2. Митогенетический фактор. Он стимулирует пролиферацию лимфоцитов, их деление, способствует популяции Т-сенсибилизированных лимфоцитов.

3. Фактор ингибирующий миграцию макрофагов (MIF)). Он способствует накоплению макрофагов в области аллергической альтерации и вызывает развитие воспаления.

4. Лимфотоксин. Он оказывает цитотоксический эффект, вызывает разрушение и гибель клетки-мишени.

5. Фактор хемотаксиса. Он способствует скоплению нейтрофилов и моноцитов в очаге воспаления.

6. Кожнореактивный фактор. Он обусловливает развитие кожных проявлений

7. Интерферон. Он угнетает способность вирусов инфицировать клетку.

8. Простагландины. Они способствуют развитию лихорадки, активируют Тц лимфоциты.

Все эти факторы вызывают формирование типовых патологических процессов: воспаления, лихорадки и шока.

Лимфокины вызывают развитие клинических проявлений

Патофизиологическая стадия

Эта стадия проявляется в виде:

1. Бактериальной аллергии (болезней туберкулинового типа)

2. Контактной аллергии

Бактериальная аллергия

Если организм сенсибилизирован, то на месте введения фильтрата из убитых бактерий через 2-3 дня образуется воспалительный инфильтрат. Бактериальная аллергия является

показателем не только аллергии, но и вакцинации.

Контактная аллергия

Она возникает при контакте с чужеродным веществом (препараты брома, соли тяжелых металлов, красители, косметические средства, новокаин, пенициллин, моющие средства). Эти вещества - гаптены, но, соединяясь с белками кожи, становятся полными аллергенами. Проявляется контактная аллергия кожными реакциями - гиперемия, дерматит, зуд, сыпь.

Повышенная чувствительность немедленного типа

Это - гуморальные реакции, в них участвуют В-лимфоциты.

Механизмы развития

1. Патоиммунная стадия

2. Патохимическая стадия

3. Патофизиологическая стадия

Патоиммунная стадия

Эта стадия отражает механизмы сенсибилизации.

Антиген Макрофаг Вл Всенс. Вп

Вт

ИЛ-1 ИЛ-2

Плазматическая

Тх клетка

IgE IgM IgG

Антиген взаимодействует с макрофагом и с участием Тх, ИЛ-1 и ИЛ-2 В-лимфоциты становятся сенсибилизированными, антигенчувствительными.

При первичном воздействии антигена из Всенс. лимфоцитов образуются В-клетки памяти, которые сохраняют повышенную чувствительность к антигену, Вт лимфоциты и плазматические клетки. Плазматические клетки продуцируют иммуноглобулины IgE и IgG. Основную роль в аллергических реакциях играют IgE - аллергические антитела. IgE фиксируются на соматических клетках, в частности, на тучных клетках. Клетке становится чувствительной к антигену. По своему строению IgE имет тяжелую и легкие цепи. Отрезок Fc (тяжелая цепь) имеет сродство к тучным клеткам. Легкие цепи являются антигенчувствительными: с ними реагирует антиген. Таким образом IgE превращается в рецептор для антигена. Кроме IgE, в плазматических клетках образуются IgG. Они могут проявлять свойства IgE, то-есть быть аллергическими антителами. Часть IgG является блокирующими антителами.

IgE способны образовывать с антигеном патоиммунный комплекс, который вызывает разрушение, лизис клетки и освобождение медиаторов аллергии.

Патохимическая стадия

Под влиянием патоиммунного комплекса из клеток освобождаются медиаторы аллергии, которые способствуют клиническим проявлениям. Основными медиаторами при аллергических реакциях немедленного типа являются:

1. Гистамин - он освобождается из тучных клеток, расширяет сосуды, повышает сосудистую проницаемость, вызывает спазм бронхов и гладкой мускулатуры, увеличивает секрецию слизи.

2. Гепарин - освобождается из тучных клеток, усиливает фибринолитическую активность крови

3. Медленно реагирующая субстанция аллергии - является производной арахидоновой кислоты, образуется в тучных клетках легких. МРСА вызывает медленный спазм бронхиол при бронхиальной астме. Спазм не снимается антигистаминными препаратами. Образуется мокрота, закупоривающая бронхи.

4. Брадикинин вызывает повышение сосудистой проницаемости, расширяет сосуды, вызывает боль, зуд.

5. Ацетилхолин обладает теми же свойствами, что гистамин и брадикинин, но в меньшей степени.

6. Простагландины вызывают эффект, аналогичный гистамину и брадикинину, способствует развитию лихорадки.

7. Фактор хемотаксиса эозинофилов способствует хемотаксису эозинофилов. Эозинофилия свидетельствует об аллергизации организма.

8 Комплемент - участвует в реализации реакций II типа.

Проявлениями действия медиаторов являются воспаление, лихорадка, шок.

Патофизиологическая стадия

На этой стадии формируются типовые патологические процессы и аллергические заболевания. Выделяют 3 группы аллергических реакций:

1. Аллергические реакции I типа: в этих реакциях играют роль IgE

2. Аллергические реакции II типа: в этих реакциях принимают участие IgG

3. Аллергические реакции III типа ( реакции свободных иммунных комплексов).

К I группе аллергических реакций относятся атопические реакции, анафилаксия.

Атопические реакции

К ним относятся сенная лихорадка, бронхиальная астма, крапивница, отек Квинке.

Сенная лихорадка возникает при воздействии пыльцы растений. Заболевание проявляется ринитом, конъюктивитом, зудом, слезотечением, кашлем, иногда лихорадка, бронхит. Все эти симптомы обусловлены участием гистамина.

Бронхиальная астма возникает при действии бытовых аллергенов - домашняя пыль, которая содержит клещи. Заболевание характеризуется приступообразными нарушениями бронхиальной проходимости, клиническим выражением которых являются приступы экспираторного (с затруднением выдоха) удушья. Основную роль в бронхоспазме играет медленно реагирующая субстанция аллергии.

Крапивница - аллергическое заболевание, характеризующееся быстрым образованием отеков очагового характера. В основе патогенеза крапивницы лежит повышение сосудистой проницаемости под влиянием гистамина. Заболевание развивается при действии различных аллергенов. Оно характеризуется лихорадкой, головной болью, общим недомоганием, зудом. Крапивница занимает второе место после бронхиальной астмы.

Ангионевротический отек (отек Квинке) - локально ограниченный отек кожи и подкожной клетчатки с преимущественной локализацией в области лица, слизистых оболочек полости рта, конечностей. Отек Квинке является одной из разновидностей крапивницы. Заболевание возникает при действии лекарственных препаратов, пищевых аллергенов, пыльцы растений. В патогенезе отека Квинке играет роль гистамин.

Анафилаксия

Анафилаксия - беззащитность. Анафилаксия проявляется общими и местными реакциями. Общая анафилаксия проявляется анафилактическим шоком.

Анафилактический шок может развиваться при введении в организм антибиотиков, антитоксических сывороток, сульфаниламидов, при приеме некоторых пищевых продуктов. При анафилаксии наряду с IgE в развитии шока принимают участие циркулирующие IgG. В образовании патоиммунного комплекса принимает участие медиатор анафилатоксин. Его действие реализуется через выброс гистамина. Шок характеризуется падением артериального давления, расширением сосудов и развитием коллапса, развитием сердечной и дыхательной недостаточности. Анафилактический шок может развиваться при укусе пчел. В этом случае шок развивается с участием ацетилхолина.

Местная анафилаксия (феномен Артюса) возникает на месте повторного введения лекарственного препарата, лошадиной сыворотки в дозе 0,5-1,0 мл кролику с интервалом в 5-6 дней. Местная анафилаксия сопровождается развитием асептического воспаления, гиперемии, отека, эмиграции лейкоцитов. Реакция проявляется после 4-5 инъекций препарата. В механизмах развития феномена Артюса участвуют IgG.

Цитолитические реакции

Аллерген фиксируется на клетках крови. Образуется патоиммунный комплекс с IgG в присутствии комплемента (С-3,С-5). Это комплекс фиксируется на мембранах клеток крови и с участием цитолизина вызывает разрушение клеток. По этому механизму развиваются аллергические гемопатии (анемии, гемолитическая желтуха, лейкопении, тромбоцитопении с явлениями кровоизлияний и кровотечения).

Болезни свободных иммунных комплексов

В качестве антител в этих реакциях выступают циркулирующие IgG. Патоиммунный комплекс образуется в крови с участием комплемента и затем фиксируется на мембранах почек, лимфоузлов, эндотелии микроциркуляторного русла. Аллергическая реакция в виде воспалительного процесса развивается в любом органе.

Примером этих реакций может служить сывороточная болезнь, которая возникает после введения лечебной сыворотки, антибиотиков, гормонов, белковых препаратов. Заболевание проявляется генерализованной реакцией лимфоузлов, лихорадкой, кожными проявлениями в виде крапивницы. В патологический процесс включаются почки, миокард, суставы. В крови образуются конгломераты, которые закупоривают капилляры и нарушают микроциркуляцию.

Аутоаллергия

Аутоаллергия развивается в ответ на действие аутоаллергенов (эндогенных аллергенов). Физиологическая система иммунного ответа реагирует на аутоаллергены выработкой аутоантител.

Аутоаллергены

Естественные Приобретенные

(первичные) (вторичные)

белки нормаль- I II III IY

ных тканей

Аутоаллергия - это состояние аутоагрессии иммунокомпетентных клеток, способных реагировать с белками собственных тканей.

Аутоаллергия относится к смешанной аллергии. Она развивается по механизму повышенной чувствительности замедленного типа и повышенной чувствительности немедленного типа.

ПЧЗТ Тц

ААГ ФСИО

ПЧНТ IgE, IgG, IgM

Механизмы развития аутоаллергии

Существует несколько взглядов на на механизмы развития аутоаллергии.

  1. Первичные ААГ. Некоторые ткани организма в эмбриогенезе развивались вне контакта с ФСИО. Эти ткани оказались в изоляции, за гистогематическим барьером, и протеины этих органов и тканей не имеют генов гистосовместимости. Эти протеины несовместимы с иммунокомпетентными клетками (В- и Т-лимфоцитами) и становятся аутоаллергенами. Эти лимфоциты и А-клетки относятся к этим протеинам как чужеродным. Это - протеины сетчатки, хрусталика, нервной системы, щитовидной железы, мужских половых гонад. При нарушении гистогематического барьера эти протеины выходят в кровь и лимфоциты воспринимают их как чужеродные. При взаимодействии протеинов и лимфоцитов развивается аутоаллергическая реакция. По этому механизму развиваются такие заболевания как тиреодит, энцефаломиелит, офтальмия (воспалительные процессы поврежденного глаза).

  2. Второй механизм, который способствует развитию аутоаллергических реакций, связан с нарушением механизмов толерантности иммунокомпетентных клеток, в частности, Т-клеток. По теории Бернета эти лимфоциты образуют запретный клон. В процессе развития организма эти лимфоциты не способны различать свое и чужое. Этот клон лимфоцитов или исчезает к рождению, или находится в депрессированном состоянии под контролем гена иммунной супрессии (Is). При ослаблении генного контроля функция Т-супрессоров становится недостаточной и агрессивные лимфоциты (лимфоциты запретного клона) экспрессируются, становятся активными и начинают выполнять роль аутоаллергенов. Таким образом, аутоаллергические реакции развиваются в этом случае в результате нарушения генного механизма.

Согласно второму взгляду, при действии мутагенных факторов в организме образуются мутантные лимфоциты, способные выступать как аутоантигены. С участием этого механизма развивается ряд заболеваний.

Ревматоидный артрит: это аутоаллергическое воспаление суставов. Заболевание развивается при участии ревматоидного фактора (IgM). Это антитело. IgM образуются при воздействии аллергена (некоторые участки IgG). IgG имеет антигенные детерминанты - идиотипы. На них реагируют В-лимфоциты. В ответ на идиотипы вырабатывается антиидиотип (IgM). Образуется комплекс "идиотип-антиидиотип", который поражает синовиальные мембраны суставов.

Диссеминированная красная волчанка. ДНК соединительной ткани часто подвергается действию патологических лимфоцитов. В этом случае ДНК выступает как аутоаллерген. В ответ на образование аутоаллергенов образуются аутоантитела. При реакции ААГ+ААТ образуется патоиммунный комплекс, который фиксируется на коже, почках, миокарде, стенке сосудов, вызывая поражение этих тканей.

Миастения. Патологические лимфоциты (В-клетки) способны воспринимать ацетилхолиновые рецепторы как чужеродные, как аутоантигены. Образуются противоацетилхолиновые антитела, которые блокируют ацетилхолиновые рецепторы. Развивается мышечная слабость, мышцы не сокращаются.

Заболевания при действии вторичных (приобретенных) аутоаллергенов

I. Измененные, денатурированные белки способны приобретать свойства аутоаллергенов. Физиологическая система иммунного ответа реагирует на эти белки выработкой аутоантител. Причиной появления таких белков являются обширные ожоги. Образуется патоиммунный комплекс, вызывающий аутоаллергическую реакцию.

II. Ряд инфекционных возбудителей и тканевых аллергенов имеют общие детерминантные группировки. Некоторые штаммы кишечной палочки и белки слизистой кишечника имеют общие детерминанты. По этому механизму развивается язвенный колит аутоаллергического происхождения. Ревмокардит. Стрептококк А имеет сходные детерминантные группировки с кардиомиоцитом. Образуется патоиммунный комплекс, который повреждает миокард. По этому механизму развивается инфекционно-аллергическая бронхиальная астма. Развитие ее связано с тем, что микрофлора дыхательных путей имеет общие детерминантные группировки с протеинами тканей легких.

III. Ионизирующая радиация может вызывать разрушение тканей и появление аутоаллергенов. При инфаркте миокарда, при некрозах сердечной мышцы кардиомиоциты повреждаются и становятся аутоаллергенами. Они вызывают образование аутоантител с последующим образованием патоиммунного комплекса.

IY. К аутоаллергенам относятся промежуточные аллергены. В этом случае в организме могут образовываться комплексные аутоаллергены. Чаще всего эта группа аутоаллергических заболеваний возникает с участием вирусов. Вирусы включаются в клетку и повреждают ее. На разрушенные клетки физиологическая система иммунного ответа отвечает развитием аутоаллергического процесса.

Гипосенсибилизация

Гипосенсибилизация - снижение повышенной чувствительности организма на действие антигена.

Механизмы гипосенсибилизации лежат в основе принципов лечения и профилактики аллергических заболеваний.

В механизмах гипосенсибилизации участвуют нервная и эндокринная системы, биологические активные вещества.

ЦНС

Эндокринная Биологические

система СНС ПСНС активные

вещества

А-клетки, Т- и В-клетки

Существуют методы неспецифической и специфической гипосенсибилизации.

Неспецифические методы

1. Использование седативных препаратов, вызывающих усиление тормозных процессов в ЦНС. Показано, что при наркозе анафилактический шок не развивается.

2. Преобладание симпатической нервной системы (в частности,  -адренергической иннервации) снижает активность аллергической реакции. Можно использовать введение адреналина. Гипосенсибилизация связана с угнетением парасимпатической нервной системы, преобладание холинергических механизмов. С этой целью можно использовать атропин.

3. Снижение активности аллергических реакций возможно при использовании противоаллергических гормонов, в частности, кортизола и АКТГ.

4. Применение антигистаминных препаратов, так как в развитии многих аллергических реакций участвует гистамин.

5. Использование больших доз биологических активных веществ.

Специфическая гипосенсибилизация

1. Устранение аллергена.

2. Нагрузка антигеном. Большие дозы антигена и малые, но часто вводимые дозы антигена вызывают гипосенсибилизацию. При этом развивается толерантность: стимулируется образование Т- и В-толерантных клеток, активируются Т-супрессоры, происходит образование блокирующих антител (IgG).

3. Нагрузка антителами. Введение антител в больших дозах приводит к блокаде и нейтрaлизации антигена.

ПАТОФИЗИОЛОГИЯ ЛИХОРАДКИ

Лихорадка - типовой патологический процесс, в основе которого лежит накопление тепла в организме в результате перестройки терморегуляции под действием чрезвычайных раздражителей инфекционной и неинфекционной природы. Основными симптомами лихорадки являются: озноб, жар, испарина. Лихорадка может быть симптомом, неспецифическим проявлением или самостоятельным заболеванием.

Сравнительно-патологическое значение лихорадки.

Способность к развитию лихорадки сформировалась в процессе эволюции: она наблюдается только у гомойотермных животных и человека. Пойкилотермные животные отвечают на действие ряда патогенных раздражителей повышением теплопродукции, но задержки тепла не происходит: наряду с теплопродукцией активируются и процессы теплоотдачи. В онтогенезе способность развивать лихорадочную реакцию формируется по-разному в зависимости от степени развития ЦНС. У новорожденных и детей первого года жизни способность регулировать теплоотдачу развита недостаточно, поэтому лихорадка протекает у них атипично: она колеблется скачкообразно. В этом возрасте чаще наблюдаются явления перегревания и переохлаждения.

О лихорадке знали давно, но научное понимание процесса развития лихорадки определилось в XX веке.

Существует две теории развития лихорадки:

1) обменно-интоксикационная теория (Р.Вирхов)

2) терморегуляторная теория (С.П.Боткин, И.П.Павлов)

Согласно обменно-интоксикационной теории лихорадка - это инфекционный процесс, процесс самоотровления. Возникновение ее связано с нарушением обмена веществ. С точки зрения терморегуляторной теории лихорадка рассматривается как рефлекс, в основе которого лежит нарушение равновесия процессов теплоотдачи и теплопродукции в связи с перестройкой функции терморегуляторного центра. В настоящее время принята терморегуляторная теория.

Х Х Х Теплопродукция

Терморецепторы ТВН

Т Т Т Теплоотдача

Как происходит терморегуляция в организме? Главный центр терморегуляции находится в заднем гипоталамусе и представлен тормозными вставочными нейронами (интернейронами). Их главной функцией является определение и поддержание нормального температурного гомеостаза. Информация о температуре организма к интегративному центру поступает с периферических терморецепторов (холодовых и тепловых, глубоких и поверхностных: с внутренних органов, сосудистой стенки), а также с центральных тепловых и холодовых терморецепторов, которые расположены в гипоталамусе и спинном мозге. Главный терморегуляторный центр анализирует эту информацию. Если температура снижается, то возбуждаются холодовые термонейроны, которые усиливают теплообразование, и тормозятся тепловые термонейроны, которые ограничивают теплорассеивание. В результате этих процессов температура остается в пределах нормы (36,60 ). При нарушении этого равновесия развивается лихорадка.

По своему происхождению лихорадка бывает инфекционной и неинфекционной. Инфекционная лихорадка возникает при заболеваниях бактериальной и вирусной природы. Неинфекционная лихорадка встречается при стрессе, введении больших доз лекарственных препаратов (например, фенамина, фенацетина, кофеина), при патологических процессах и заболеваниях (кровоизлиянии в мозг, ожогах, инфаркте миокарда, аллергических реакциях).

Лихорадка

Инфекционная Неинфекционная

Заболевания Эмоциональ- Лекарствен- При соматических

бактериальной ная ная заболеваниях

и вирусной

природы

большие дозы кровоизлияния в мозг,

фенамина, фена- инфаркт миокарда, ожоги,

цетина, кофеина аллергические реакции

Этиология лихорадки

Чрезвычайные раздражители, которые вызывают развитие лихорадки, носят название пирогенов.

греч. pyros - огонь

Все пирогены делятся на экзопирогены и эндопирогены, по механизму действия - на первичные и вторичные. Первичные (экзопирогены) являются этиологическими, пусковыми, вторичные (эндопирогены) - патогенетическими.

Пирогены

Экзопирогены Эндопирогены

Лейкопирогены Продукты тканевого ПИК

распада

Экзопирогены чаще бывают бактериального происхождения и представляют собой липополисахариды. Это высокомолекулярные соединения. Действующим, активным началом экзопирогенов является липоид А. Из бактерий получен искуцсственный пироген - пирогенал.

Эндопирогены представлены продуктами распада тканей и лейкопирогенами. Лейкопирогены - низкомолекулярные пептиды, образуются под влиянием экзопирогенов. К эндопирогенам относится патоиммунный комплекс (ПИК). Основную роль в развитии лихорадки играют лейкопирогены. Они способны перестраивать регуляцию теплового обмена на более высоком, установочном уровне.

Стадии лихорадки

Существует 3 стадии развития лихорадки:

I. Стадия повышения температуры

II. Стадия стояния высокой температуры

III. Стадия снижения температуры

В основе этих стадий лежит перестройка процессов терморегуляции. В I стадии увеличиваются процессы теплопродукции и уменьшаются процессы теплоотдачи. Температура повышается. Характерным симптомом этой стадии является озноб. Во II стадии эти процессы выравниваются на более высоком уровне, чем в норме. Симптомом II стадии является жар. В III стадии снижаются процессы теплообразования и преобладают процессы теплоотдачи. Основным симптомом этой стадии является испарина, потоотделение. Снижение температуры на III стадии может быть медленным, литическим (несколько часов, дней) или быстрым, критическим вследствие резкого расширения сосудов, что может привести к развитию коллапса (острой сосудистой недостаточности).

По степени повышения температуры лихорадка разделяется на субфебрильную (повышение температуры в пределах 37-380 С), умеренную (38-390 С), высокую (39-410 С) и гиперпиретическую (выше 410 С). В зависимости от характера колебаний суточной температуры во II стадии выделяют следующие виды лихорадки: 1) постоянную (febris continua) - колебания температуры не превышают 10 С (крупозная пневмония, брюшной и сыпной тиф), 2) послабляющую (febris remittens) - суточные колебания составляют 1,5-20 С (большинство вирусных и многих бактериальных инфекций), 3) перемежающую (febris intermittens) - суточные колебания температуры 2-30 С (малярия, гнойная инфекция, туберкулез), 4) изнуряющую (febris hectica) - суточные колебания температуры достигают 3-50 С (сепсис, перитонит, гнойная инфекция).

Механизмы развития лихорадки

Различают 4 механизма развития лихорадки:

1. Клеточно-молекулярный механизм

2. Рефлекторный механизм

3. Центральный механизм

4. Гуморальный механизм

Клеточно-молекулярный механизм

При участии этого механизма происходит накопление тепла в организме за счет увеличения теплопродукции. Увеличение теплопродукции происходит при окислении белков, жиров и углеводов в присутствии кислорода. Примерно 50% энергии образуется при выработке АТФ, а 50% - при свободном окислении

Пирогенал,

Кишечная палочка Несократительный Химические

АТФ термогенез реакции Вторичная

теплота

Сократительный Сокращение

термогенез мышц

Б, Ж, У + О2

Свободное окисление Первичная

Дифтерийный токсин, теплота

тироксин

Выработка АТФ происходит при окислительном фосфорилировании. Часть АТФ расходуется на химические реакции (осмотические реакции и другие) - на несократительный термогенез. Другая часть энергии АТФ расходуется на сократительный термогенез, сокращение мышц. В результате этих реакций образуется вторичная теплота.

Кроме вторичной теплоты, в повышении температуры участвует и первичная теплота. Она образуется в результате свободного окисления и интенсивно протекает в жировой ткани, в частности, при окислении бурого жира. Образование первичной и вторичной теплоты способствует повышению температуры, развитию лихорадки.

Образование первичной теплоты повышает потребность тканей в кислороде, что менее благоприятно для организма. При преимущественном образовании первичной теплоты может возникнуть дефицит кислорода. В условиях гипоксии образуются кислые метаболиты, которые нарушают функцию тканей и органов. Развивается тепловая альтерация тканей. Поэтому лихорадка с преобладанием первичной теплоты сопровождается интоксикацией. Это часто наблюдается у детей, у которых преобладают процессы химической терморегуляции, но может возникать и у взрослых, если лихорадочный процесс протекает длительно и с высокой температурой.

Существует ряд пирогенов, которые влияют на образование первичной или вторичной теплоты. Так, образование первичной теплоты активируется при воздействии дифтерийного токсина, тироксина. Тироксин вызывает разобщение окислительного фосфорилирования, при этом потребляется большое количество кислорода. На выработку вторичной теплоты большое влияние оказывает пирогенал, некоторые штаммы кишечной палочки.

Рефлекторные механизмы

В основе рефлекторного механизма лежит нарушение соотношения процессов теплопродукции и теплоотдачи. Разберем этот механизм с точки зрения стадий развития лихорадочного процесса.

В I стадии, стадии повышения температуры участвуют термочувствительные (холодовые и тепловые) рецепторы и нетермочувствительные (адренорецепторы и холинорецепторы). На этой стадии изменяется реактивность тепловых и холодовых рецепторов. Повышается активность холодовых рецепторов. Происходит это в результате рефлекторного спазма периферических артериол с участием  -адренорецепторов. Процессы теплоотдачи уменьшаются. Увеличивается различие температуры между внешней поверхностью организма (кожей) и внутренней средой. Это вызывает рефлекторное сокращение мышц (активируется сократительный термогенез), повышается теплообразование, возникает мышечная дрожь (озноб). Возникновению озноба и образованию вторичной теплоты способствует активация холинорецепторов (под влиянием ацетилхолина). Возбуждение  -адренорецепторов способствует окислению бурого жира и образованию первичной теплоты. Все это приводит к преобладанию процессов теплопродукции и повышению температуры.

Во II стадии повышается активность тепловых рецепторов. Происходит расширение артериол с участием -адренорецепторов при воздействии адреналина, развивается гиперемия. II стадия характеризуется жаром. На этой стадии устанавливается новый уровень температуры по сравнению с исходным.

В III стадии снижается активность холодовых рецепторов, а активность тепловых рецепторов остается на высоком уровне. Угнетаются процессы теплообразования, активируется теплоотдача. Эта стадия характеризуется снижением температуры, усиливается потоотделение. На этой стадии затормаживаются вазоконстрикторы и преобладают  адренергические и холинергические реакции, которые способствуют расширению сосудов.

Центральный механизм

В основе этого механизма лежит перестройка функции терморегуляторного центра, который находится в заднем отделе гипоталамуса. Там же находятся тормозные вставочные нейроны, на которые воздействуют лейкопирогены. Под влиянием пирогенов меняется также реактивность холодовых и тепловых рецепторов ЦНС, происходит изменение соотношения процессов теплообразования и теплоотдачи в организме. При этом меняется реактивность тормозных вставочных нейронов, и установочный уровень температуры, который в исходном состоянии находился в пределах нормальных колебаний температуры (около 36,60 С), смещается на новый, более высокий установочный уровень. Таким образом, под влиянием пирогенов формируется новая установочная температурная точка. В развитии лихорадки по центральному механизму большую роль играет ретикулярная формация. Через ретикулярную формацию в ЦНС поступает информация с периферических адренорецепторов. В зависимости от функционального состояния ретикулярной формации (активация или угнетение) наблюдается развитие или торможение лихорадочного процесса. Большую роль в развитии лихорадки играет ЦНС. При возбуждении ЦНС при воздействии стресса развивается эмоциональная лихорадка.

Гуморальные механизмы

Это - эффекторное звено развития лихорадки. В патогенезе лихорадки играют роль гормоны, нейромедиаторы, биологические активные вещества, простагландины.

Простагландин Е1 (ПГ Е1 ) является посредником между пирогенами и тормозными вставочными нейронами. Это приводит к накоплению цАМФ, что формирует новый уровень терморегуляции.

Пироген ПГ Е1 цАМФ ТВН Лихорадка

В развитии лихорадки играют роль катехоламины: норадреналин взаимодействует с  -адренорецепторами, вызывая торможение сосудистых реакций теплоотдачи, стимулирует интегративный центр терморегуляции. Адреналин взаимодействует с - адренорецепторами бурого жира, способствуя образованию первичной теплоты, цАМФ, повышению активности несократительного термогенеза. Ацетилхолин активирует сократительный термогенез. Серотонин тормозит сосудистые реакции теплоотдачи.

Большую роль в развитии лихорадки играют гормоны. Выделяют пролихорадочные и противолихорадочные гормоны.

Пролихорадочные гормоны: СТГ, тироксин, ТТГ, прогестерон. Они стимулируют центральное звено в механизмах развития лихорадки, повышают чувствительность тканей к катехоламинам, повышают образование первичной и вторичной теплоты, увеличивают образование цАМФ.

Тироксин Центрогенное звено

ТТГ Чувствительность

Прогестерон тканей к КА, цАМФ,

СТГ образование первичной

вторичной теплоты

Противолихорадочные гормоны: АКТГ, глюкокортикоиды, инсулин, андрогены. Эти гормоны тормозят выработку ПГ Е1 , снижают активность цАМФ, активность тормозных вставочных нейронов, прогестерона и препятствуют развитию лихорадочного процесса.

АКТГ

Глюкокортикоиды ПР Е1 цАМФ ТВН

Инсулин

Андрогены Прогестерон Лихорадка

Лихорадочный процесс оказывает влияние на обмен веществ и функцию органов и систем.

Нарушение обмена веществ при лихорадке

При лихорадке усиливается основной обмен, повышается потребление кислорода. На каждый 10 С повышения температуры основной обмен увеличивается на 10-12%. Усиливается распад гликогена, развивается гипергликемия и глюкозурия. Активируется распад жиров, происходит мобилизация жира из депо; жиры становятся источником энергии лихорадящих больных. При высокой температуре нарушается окисление жирных кислот и повышается образование кетоновых тел. При лихорадке может возникнуть отрицательный азотистый баланс в результате усиленного распада белков. При лихорадке нарушается водно-солевой обмен. В I стадии диурез повышается за cчет увеличения почечного кровотока. Во II стадии происходит задержка в организме натрия и воды. В III стадии - стадии снижения температуры - повышается потеря натрия и воды, развивается дегидратация.

Нарушение функций органов и систем при лихорадке

При лихорадке наблюдаются характерные изменения функции органов и систем. Со стороны ЦНС: при лихорадке повышается функция симпатической нервной системы, повышается раздражительность в начальных стадиях лихорадки. При высокой температуре развивается интоксикация и, как следствие, возникает торможение ЦНС, головная боль, бред, судороги, потеря сознания, кома. Сердечно-сосудистая система: при лихорадке развивается тахикардия, увеличивается минутный объем крови. Артериальное давление немного повышается в I стадию лихорадки, во II стадии остается без изменения, а в III стадии снижается. Может развиваться сердечно-сосудистая недостаточность, коллапс. Система дыхания: в I стадии лихорадки дыхание урежается, во II и III стадиях частота дыхательных движений увеличивается, развивается одышка. При высокой и длительной лихорадке может наблюдаться развитие периодического дыхания, особенно у детей. При лихорадке усиливается антитоксическая и антимикробная функции печени. В I стадии лихорадки диурез увеличивается в связи с повышением кровяного давления. Во II стадии диурез снижается, а в III стадию диурез вновь увеличивается вследствие потери хлоридов и натрия.

Угнетается функция желудочно-кишечного тракта: снижается секреция пищеварительных соков, слюны, снижается аппетит. Тормозится моторика желудка. кишечника. Может наблюдаться тошнота, рвота, усиление процессов брожения и гниения в кишечнике.

Значение лихорадки для организма

Клиницисты XIX века считали лихорадку опасной для жизни и стремились снизить температуру с помощью жаропонижающих средств. Однако искусственное снижение температуры при лихорадке не устраняло патологических изменений, связанных с развитием основного заболевания. Было показано, что искусственное снижение температуры утяжеляет течение инфекционных заболеваний. Мечников И.И. оценивал лихорадку как защитную реакцию. Лихорадочная реакция сформировалась в процессе эволюции как приспособительная реакция, поэтому ее надо рассматривать как положительную реакцию. В чем заключается положительная роль лихорадки?

В условиях умеренного повышения температуры (до 38,50 С) стимулируется выработка антител, интерферона, лизоцима, активируются процессы фагоцитоза. При лихорадке угнетается размножение некоторых бактерий и вирусов, стимулируется действие ряда лекарственных веществ, в частности, антибиотиков. Активируется антитоксическая и антимикробная функции печени, Активируется система "гипоталамус-гипофиз-кора надпочечников", стимулируются обменные процессы в клетках, повышается их функциональная активность.

Положительная роль лихорадочной реакции послужила основанием для использования пирогенной терапии для лечения ряда заболеваний, таких как сифилис, малярии.

В ряде случаев длительный лихорадочный процесс, сопровождающийся высокой температурой, оказывает отрицательное влияние на состояние организма. Развивается тепловая альтерация тканей. Может наблюдаться нарушение ряда физиологических функций: развивается периодическое дыхание, сердечные аритмии. Высокая лихорадка способствует накоплению в организме метаболитов, что вызывает явления интоксикации с потерей сознания и судорогами. Особенно опасна такая лихорадка у детей, так как дети еще не обладают устойчивой терморегуляцией. Тяжело переносят лихорадку люди пожилого возраста и с заболеваниями сердечно-сосудистой системы. Критическое падение температуры в III стадию лихорадки сопровождается резким снижением сосудистого тонуса и может вызвать у больного развитие коллапса.