Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Напряженное состояние материала в точке.doc
Скачиваний:
31
Добавлен:
16.03.2015
Размер:
2.93 Mб
Скачать

21

Российский государственный геологоразведочный университет

Кафедра механики

Сопротивление материалов

Напряженное состояние материала в точке

Учебно-методическое пособие и контрольные задания для студентов дневного и заочного отделений геологоразведочного, гидрогеологического и геофизического факультетов РГГРУ

Москва, 2008 г.

Составители: г.В. Лукошков, е.С. Булгаков, в.А. Барашков, о.В. Бадулин.

Сопротивление материалов. Напряженное состояние материала в точке.

Учебно-методическое пособие и контрольные задания для студентов дневного и заочного отделений геологоразведочного, гидрогеологического и геофизического факультетов РГГРУ.

В работе рассмотрены аналитические и графические способы исследования напряжений в наклонных сечениях при растяжении (сжатии) для линейного и плоского напряженных состояний. Методы определения главных напряжений и положение главных площадок при плоском напряженном состоянии.

Разработаны варианты заданий по исследованию линейного и плоского напряженного состояния материала в точке.

Введение.

Предлагаемое учебно-методическое пособие является руководством и пояснением к выполнению расчетно-графической работы по курсу «Сопротивление материалов» для студентов очного и заочного отделений геологоразведочного, гидрогеологического и геофизического факультетов РГГРУ.

Выполнение данной работы позволяет закрепить полученные теоретические знания и практические навыки решения задач по сопротивлению материалов.

Расчетно-графическая работа состоит из трех основных частей и охватывает основные типы задач по определению напряжений материала в точке при линейном и плоском напряженных состояниях.

  1. Основы теории.

1.1. Понятие о напряженном состоянии

Величина и направление вектора напряжения в точке зависят от того, как ориентирована проведенная плоскость сечения.

Возьмем упругое тело, на которое действуют нагрузки, и через точку А проведем ряд плоскостей сечения, тогда в каждом сечении в точке А будут действовать напряжения σ1, σ2,…, σn (рис. 1).

рис. 1

Через точку А можно провести бесчисленное множество плоскостей сечений, и в каждом из них будет действовать напряжение. Совокупность напряжений, действующих в данной точке во всех сечениях, проведенных через нее, называется напряженным состоянием в этой точке.

Для удобства изучения напряженного состояния в области этой точки проводят элементарный параллелепипед, грани которого стремятся к нулю, т.е. этот параллелепипед все время сжимается и стремится обратиться в рассматриваемую точку. На гранях этого параллелепипеда будут действовать напряжения в зависимости от того, как расположен параллелепипед. На его гранях могут действовать либо только нормальные напряжения, либо только тангенциальные напряжения, или, наконец, те и другие напряжения.

Возьмем элементарный параллелепипед в области точки А и так его сориентируем, чтобы на его гранях действовали только нормальные напряжения (рис. 2).

рис. 2

Условимся называть его грани главными сечениями, а нормальные напряжения, действующие на главных площадках – главными напряжениями.

Таким образом, будем иметь три пары главных площадок и три главных напряжения σ1, σ2 и σ3. Такое напряженное состояние, когда действуют три главных напряжения, называется объемным или трехосным.

Однако может быть такой случай, когда одно из главных напряжений обратится в нуль (σ3 = 0), тогда будут действовать только два главных напряжения σ1 и σ2. Такое напряженное состояние называется плоским или двухосным (рис. 3).

рис. 3

Возможен и еще более простой случай, когда будем иметь только одно главное напряжение σ1, остальные два σ2 и σ3 обратятся в нуль, такое напряженное состояние называется линейным (рис. 4).

рис. 4

Лучшим примером линейного напряженного состояния является простое растяжение или сжатие.

Нумерация главных напряжений производится не произвольно, а по следующему правилу. За первое главное напряжение (σ1), принимают наибольшее по алгебраической величине, а за третье (σ3) – наименьшее по алгебраической величине.

1.2. Линейное напряженное состояние

а) АНАЛИТИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ

Возьмем брус, который подвергается растяжению, найдем напряжения в наклонном сечении под углом α к поперечному сечению (рис. 5).

рис. 5

Для этого проведем наклонное сечение, отбросим верхнюю часть бруса и приложим внутренние силы, которые должны уравновесить нагрузку Р (рис. 6).

рис. 6

Все внутренние силы приведутся к одной равнодействующей силе N, направленной в противоположную нагрузке Р сторону. Причем N, где Fα – площадь наклонного сечения; р* - полное напряжение в наклонном сечении.

Так как (где F – площадь поперечного сечения), то можем записать

, но (σ – напряжение в поперечном сечении), отсюда

[1]

Построив вектор полного напряжения р* и разложив его вдоль внешней нормали к сечению и касательной к нему, получим нормальное напряжение в наклонном сечении σα и тангенциальное τα (рис. 7).

рис. 7

Если угол α получается поворотом внешней нормали против часовой стрелки, его считают положительным, в противном случае он будет отрицательным.

Определим σα и τα :

;

Подставив в эти выражения значение р* из формулы [1], получим:

[2]

Исследуя полученные выражения, найдем экстремальные значения σα и τα :

при α=0 σα max= σ cos200, т.е. σα max = σ,

Наибольшие нормальные напряжения действуют в поперечных сечениях;

при α=900 σα min= σ cos2900, т.е. σα min = 0,

Наименьшее значение, равное нулю, нормальные напряжения имеют в продольном сечении;

при α=450 , т.е. ,

Наибольшее тангенциальное напряжение действует в наклонном сечении под углом 450;

при α=0 , т.е.

В поперечном сечении (α=0) тангенциальное напряжение отсутствует. А нормальные напряжения = σαmax. Это сечение является главным. Главное напряжение имеет максимальное значение. Во всех других сечениях нормальные напряжения будут меньше, чем в главном.

Условимся нормальное напряжение считать положительным, если направление его вектора совпадает с направлением внешней нормали – это растягивающее напряжение, в противном случае будем считать нормальное напряжение отрицательным – сжимающее напряжение.

Тангенциальное напряжение считают положительным, когда его вектор получается поворотом внешней нормали по направлению движения часовой стрелки, в противном случае оно будет отрицательным.

б) ГРАФИЧЕСКОЕ РЕШЕНИЕ (построение круга Мора)

Известно главное напряжение σ1, равное напряжению в поперечном сечении при растяжении. Нужно определить напряжения в этой точке в наклонном сечении под углом α. Решить эту задачу надо графически.

Проводим оси координат. По оси абсцисс откладываем нормальные напряжения, а по оси ординат тангенциальные (рис. 8).

рис. 8

Отложим вдоль оси абсцисс значение главного напряжения σ в определенном масштабе. Получив отрезок ОА, разделим его пополам и из его середины (точка С) опишем окружность радиуса ОС=АС. Проведем из точки О луч под углом α с осью абсцисс до пересечения с окружностью (точка Дα). Для нахождения координат σα и τα соединим центр окружности с точкой Дα.

Из рис. 8 следует, что: ОКα= ОС + СКα, но , а из треугольника ДαСКα следует, что , но как радиус круга, поэтому:

.

Угол ДαСКα как внешний угол треугольника ОСДα равен сумме внутренних несмежных с ним углов, т.е. равен .

Подставив полученные значения отрезков ОС и СКα в выражение для ОКα , получим: или

Окончательно получим , а

Сравнив эти выражения, замечаем, что абсцисса точки в определенном масштабе равна нормальному напряжению в наклонной площадке, т.е. .

Из треугольника СДα Кα следует, что Дα Кα = CДα sin, но , поэтому , а .

Отсюда следует, что ордината точки Дα в определенном масштабе равна тангенциальному напряжению в наклонной площадке, т.е. .

Таким образом, координаты точки Дα дают нам значения напряжений, действующих в наклонной площадке под углом α. При помощи построенного круга, называемого кругом напряжения, можно определить напряжения во всех сечениях, проведенных через рассматриваемую точку, т.е. круг определяет напряженное состояние в точке. Этот метод был предложен немецким исследователем Мором, и поэтому часто круг напряжений называют кругом Мора.

в) ЗАКОН ПАРНОСТИ КАСАТЕЛЬНЫХ НАПРЯЖЕНИЙ

Определим нормальные и касательные напряжения на двух взаимно перпендикулярных площадках.

Для площадки, наклоненной под углом α, по формуле [2] имеем:

Для взаимно перпендикулярной площадки при значении угла нормальные и касательные напряжения можно определить или непосредственно из условия равновесия верхней или нижней части стержня (рис. 9), или по формулам [2] с заменой α на .

Применяя формулы [2], получим:

рис. 9

Анализируя полученные результаты, видим, что, во-первых,

т.е. сумма нормальных напряжений по двум взаимно перпендикулярным площадкам постоянна и равна главному напряжению; во-вторых,

т.е. на двух взаимно перпендикулярных площадках действуют равные по величине и обратные по знаку касательные напряжения (закон парности или взаимности касательных напряжений). При этом касательные напряжения на двух взаимно перпендикулярных площадках направлены оба либо к ребру пересечения площадок, либо от ребра, как на рис. 9.

Например, если изменить знак σ, то напряжения и изменят свое направление на противоположное и будут оба направлены к ребру А пересечения площадок.

Закон парности (взаимности) касательных напряжений имеет силу не только для одноосного, но и для любого другого напряженного состояния: двухосного и объемного.

1.3. Напряжения в наклонных сечениях при растяжении (сжатии) по двум взаимно перпендикулярным направлениям

а) АНАЛИТИЧЕСКИЙ МЕТОД РЕШЕНИЯ

Рассмотрим более общий случай плоского (двухосного) напряженного состояния, когда отличны от нуля два главных напряжения σ1 и σ2 (рис. 10а).

рис. 10

Как уже было отмечено ранее, индексы у обозначений главных напряжений ставятся так, что соблюдается неравенство σ1 > σ2, положительный угол α между направлением σ1 и нормалью к произвольной площадке будем отсчитывать против часовой стрелки.

Между направлением напряжения σ2 и площадкой угол равен .

Напряжения σα и τα в произвольном наклонном сечении можно или определить из условий равновесия трехгранной призмы АВС (рис. 10б), или вычислить по формулам [2], суммируя напряжения от действия σ1 с напряжениями от действия σ2 (при замене угла α на угол ).

В результате получим откуда

[3]

Далее откуда

[4]

Из формулы 4 видно, что максимальные касательные напряжения равны полуразности главных напряжений

[5]

и имеют место в сечениях, наклоненных под одним и тем же углом к направлениям σ1 и σ2, т.е. при α=45˚. Это следует из условия, что τmax соответствует sin 2α=1.

Определив касательные напряжения на площадке, перпендикулярной к площадке АВ, убедимся, что и для двухосного напряженного состояния сохраняет свою силу закон парности касательных напряжений. В этом можно убедиться также по формуле [4], определив по ней значения и .

Частные случаи

1-й случай. Рассмотрим напряженное состояние, при котором σ1= σ2= σ (рис. 10в).

в этом случае на всех площадках, проходящих через исследуемую точку, касательное напряжение равно нулю, а нормальное напряжение имеет одно и то же значение σα = σ (см. формулы [3] и [4]). Такое напряженное состояние называется равномерным двухосным растяжением (или сжатием).

2-й случай. Рассмотрим напряженное состояние, представленное на рис. 10г, характеризующееся главными напряжениями σ1= σ и σ3= - σ. При этом σ2= 0.

Определим напряжения в сечениях, одинаково наклоненных к направлениям σ1 и σ3, т.е. при α=45˚ и α=135˚ .

По формулам [3] и [4] получим σα = 0; =±σ. Такое напряженное состояние называется чистым сдвигом.

б) ГРАФИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЙ ПРИ ПЛОСКОМ НАПРЯЖЕННОМ СОСТОЯНИИ

Пусть известны главные напряжения σ1 и σ2, требуется определить напряжения на площадке под углом α. Проведем координатные оси. По оси абсцисс отложим главные напряжения σ1 и σ2 (рис. 11), получим отрезки ОА и ОВ. Отрезок АВ разделим пополам, получим точку С. Точку С примем за центр круга, и опишем его радиусом СА = СВ.

рис. 11

Из точки В проведем луч под заданным углом α к оси абсцисс до пересечения с кругом, найдем координаты точки пересечения луча с кругом Дα.

Из рис. 11 следует: ОКα = ОВ + ВС + СКα;

Подставив полученные значения отрезков ОВ, ВС и СКα в выражение для отрезка ОКα, получим:

После преобразований получим

Сравнив приведенные выше выражения, приходим к выводу, что абсцисса точки Дα представляет нормальное напряжение на наклонной площадке, т.е. .

Найдем ординату точки Дα . Из треугольника Дα СКα следует:

поэтому

так как , то

Таким образом, ордината точки Дα выражает тангенциальное напряжение на наклонной площадке .

Для определения напряжений на перпендикулярной площадке к данной, строим двойной угол (2β=180˚+2α), путем продолжения радиуса СДα до пересечения с кругом получаем точку Дβ, координаты которой и есть напряжения на этой площадке.

Таким образом, координаты любой точки круга дают напряжения на наклонных площадках, т.е. круг определяет напряженное состояние в данной точке.

1.4. Определение главных напряжений и положения главных площадок при плоском напряженном состоянии

а) АНАЛИТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ

Данная задача обратна предыдущей. Теперь известны нормальные и касательные напряжения, действуя по граням элемента (рис. 12.а). требуется определить положение главных площадок (угол φ) и величину главных напряжений (σmax и σmin). Рассмотрим равновесие трехгранной призмы с основанием АВС (рис. 12.б). Примем, что σαβ. Угол φ будем отсчитывать от направления большего напряжения до нормали к площадке. За положительное направление отсчетов угла φ примем направление против часовой стрелки.

рис. 12

Площадь наклонной грани обозначим через dF. Тогда площадь вертикальной грани будет dF sin φ, а горизонтальной - dF cos φ.

Проектируя все силы на направление σφ, получим

Проектируем теперь все силы на направления τφ

Сократив на dF и введя функции двойных углов, получим:

[6]

[7]

При изменении угла наклона площадки φ величина σφ будет непрерывно изменяться.

Чтобы отыскать положения главных площадок, т.е. площадок, на которых действуют экстремальные нормальные напряжения, следует либо приравнять нулю производную , либо приравнять нулю касательные напряжения τφ, так как на главных площадках касательных напряжений нет.

В обоих случаях получаем следующую зависимость для определения угла φ0 наклона главных площадок:

или

[8]

Для получения экстремальных значений нормальных напряжений, т.е. величин главных напряжений, значение угла из формулы [8] подставим в формулу [6]. Предварительно тригонометрические функции в формуле [6] следует выразить через тангенс двойного угла. Для этого используют известные формулы тригонометрии:

После несложных преобразований, которые необходимо сделать учащемуся самостоятельно, получим следующую формулу для определения величин главных напряжений

[9]

Если одно из заданных нормальных напряжений равно нулю, то формула [9] упростится и примет вид

[10]

Этой формулой будем пользоваться в дальнейшем при изучении изгиба и сложного сопротивления.

Исследуя вторую производную можно убедиться, что на главной площадке под углом φ0 при принятых условиях (σα>σβ) действует максимальное главное напряжение, а на площадке под углом φ0+90˚ действует минимальное главное напряжение.

Пример. Определить величину и направление главных напряжений в случае напряженного состояния, показанного на рис. 13.1.

рис. 13

Р е ш е н и е. По формуле [8] определяем положение главных площадок, перпендикулярных плоскости чертежа

Знак «минус» показывает, что φ0 отсчитывается от направления σα=30 мПа по часовой стрелке.

По формуле [9] получим:

В соответствии со сказанным выше σmax действует на площадке под углом φ0, σmin – на площадке под углом φ0 + 90˚.

б) ОПРЕДЕЛЕНИЕ ГЛАВНЫХ НАПРЯЖЕНИЙ ГРАФИЧЕСКИМ МЕТОДОМ

При известных σα, σβ и τα необходимо графически определить направление и величину σmax = σ1 и σmin = σ3. Графическое построение (рис. 14.1).

Принимаем масштаб напряжений. Проводим оси прямоугольной системы координат. Отложим на оси нормальных напряжений σα = OKα и σβ = OKβ. Восстанавливаем перпендикуляры к оси σ, отложив на них отрезки КαДα = τα и КβДβ = τβ (направление τα и τβ принимаются в зависимости от знаков напряжений). Соединив точки Дα и Дβ, получаем центр С круга Мора. Радиусом С Дα или С Дβ описываем окружность, пересечение которой с осью нормальных напряжений дает точку А и В. Тогда ОА=σ1 и ОВ= σ3. Чтобы получить направление 1-го и 2-го главных напряжений на круге Мора, необходимо воспользоваться полюсом М.

рис. 14

    1. Зависимость между деформациями и напряжениями при плоском напряженном состоянии. Удельная работа деформации.

Пусть брус прямоугольного сечения (рис. 15) растягивается по двум взаимно перпендикулярным направлениям х и у напряжениями σ1 и σ2. Определим относительные удлинения, которые получит брус в направлениях осей х, у и z.

рис. 15

Если бы на брус действовало одно растягивающее напряжение σ1, то относительное удлинение в направлении растяжения согласно закону Гука было бы равно а по осям у и z брус получил бы относительные укорочения

Аналогично этому при действии только одного растягивающего напряжения σ2 относительное удлинение в направлении растяжения было бы равно а по осям х и z брус получил бы относительные укорочения

Следовательно, при одновременном действии напряжений σ1 и σ2 относительные деформации в направлениях осей х, у и z будут соответственно равны:

В общем случае объемного напряженного состояния относительные деформации ε1, ε2 и ε3 соответственно будут равны:

[11]

Частные случаи. 1) Простое растяжение: σ1= σ, σ2= 0, σ3=0; тогда по формуле [11] получим:

2) Растяжение по двум взаимно перпендикулярным направлениям, если σ1= σ2= σ; σ3=0; тогда из формул [11] получим:

Если напряженное состояние плоское, т.е. σ3=0, и известны относительные деформации ε1 и ε2, то из формул [11] легко определяются напряжения σ1 и σ2:

Этими формулами часто пользуются при экспериментальном определении напряжений, измеряя ε1 и ε2.

Найдем теперь выражение удельной работы деформации при растяжении или сжатии по двум направлениям. Удельная работа деформации при растяжении (сжатии) в одном направлении выражается формулой

[12]

При плоском напряженном состоянии, ориентируя грани кубика со стороной, равной единице, по площадкам, где действуют напряжения σ1 и σ2, получим:

Подставив сюда значения ε1 и ε2 из формул [11], при σ3 = 0 будем иметь:

или

[13]

Это и есть выражение удельной работы при плоском напряженном состоянии.

Пример. Определить относительные деформации бруса ε1 и ε2, если растягивающее напряжение σ1=60 МПа, а сжимающее σ2=- 75 МПа (рис. 16). Модуль упругости Е=2,2·105 МПа. Коэффициент Пуассона μ=0,3.

Решение. На основании формул [11] имеем:

рис. 16