Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
перепеченов лекции.docx
Скачиваний:
204
Добавлен:
16.03.2015
Размер:
2.73 Mб
Скачать

187

Лекция 1

Тема: «ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ЗАЩИТЫ ИНФОРМАЦИИ В ИНФОРМАЦИОННЫХ СИСТЕМАХ»

Основными задачами изучения дисциплины являются знакомство студентов с конкретными системами защиты информации и привитие некоторых практических навыков в области построения защищенных информационных систем, функционирующих в рамках одного предприятия (организации).

Являясь дисциплиной специализации, данный курс готовит студентов к конкретной профессиональной деятельности и должен служить основой для их дальнейшего роста на должностях специалистов по защите информации.

Вступление человечества в XXI век знаменуется бурным развитием информационных технологий во всех сферах общественной жизни. Информация все в большей мере становится стратегическим ресурсом государства, производительной силой и дорогим товаром. Это не может не вызывать стремления государств, организаций и отдельных граждан получить преимущества за счет овладения информацией, недоступной оппонентам, а также за счет нанесения ущерба информационным ресурсам противника (конкурента) и защиты своих информационных ресурсов.

Значимость обеспечения безопасности государства в информационной сфере подчеркнута в принятой в сентябре 2000 года «Доктрине информационной безопасности Российской Федерации»: "Национальная безопасность Российской Федерации существенным образом зависит от обеспечения информационной безопасности, и в ходе технического прогресса эта зависимость будет возрастать".

Остроту межгосударственного информационного противоборства можно наблюдать в оборонной сфере, высшей формой которой являются информационные войны. Элементы такой войны уже имели место в локальных военных конфликтах на Ближнем Востоке и на Балканах. Так, войскам НАТО удалось вывести из строя систему противовоздушной обороны Ирака с помощью информационного оружия. Эксперты предполагают, что войска альянса использовали программную закладку, внедренную заблаговременно в принтеры, которые были закуплены Ираком у французской фирмы и использовались в АСУ ПВО.

Не менее остро стоит вопрос информационного противоборства и на уровне организаций, отдельных граждан. Об этом свидетельствуют многочисленные попытки криминальных элементов получить контроль над компьютерными технологиями для извлечения материальной выгоды. По данным института компьютерной безопасности в Сан-Франциско из опрошенных специалистов в области информационной безопасности 64% сообщают о фактах нарушения безопасности, 44% - о НСД к файлам, 25% - об атаках, приводящих к нарушению функционирования системы, 24% - об атаках извне, 18% - о похищении важной информации, 15% - о финансовых злоупотреблениях, 14% - об умышленном повреждении данных. Все эти виды нарушений приводят к значительному материальному ущербу. В противовес этому необходимо создавать организационно-технические системы обеспечения безопасности в автоматизированных системах.

Важно также обеспечить конституционные права граждан на получение достоверной информации, на ее использование в интересах осуществления законной деятельности, а также на защиту информации, обеспечивающую личную безопасность.

Противоборство государств в области информационных технологий, стремление криминальных структур противоправно использовать информационные ресурсы, необходимость обеспечения прав граждан в информационной сфере, наличие множества случайных угроз вызывают острую необходимость обеспечения защиты информации в компьютерных системах (КС), являющихся материальной основой информатизации общества.

Проблема обеспечения информационной безопасности на всех уровнях может быть решена успешно только в том случае, если создана и функционирует комплексная система защиты информации, охватывающая весь жизненный цикл компьютерных систем от разработки до утилизации и всю технологическую цепочку сбора, хранения, обработки и выдачи информации.

Информация (от лат. informatio — осведомление, разъяснение, изложение, от лат. informare — придавать форму) — в широком смысле абстрактное понятие, имеющее множество значений, в зависимости от контекста. В узком смысле этого слова — сведения (сообщения, данные) независимо от формы их представления. В настоящее время не существует единого определения термина информация. С точки зрения различных областей знания, данное понятие описывается своим специфическим набором признаков. Например, «информация» может трактоваться, как совокупность данных, зафиксированных на материальном носителе, сохранённых и распространённых во времени и пространстве.

Основоположник кибернетики Норберт Винерговорил об информации так:

«Информация есть информация, а не материя и не энергия».

То есть Винер относил информацию (в теоретико-информационном понимании этого термина) к фундаментальным понятиям, не выводимым через более простые. Что, впрочем, не мешает нам пояснять смысл понятия информация на конкретных примерах и описывать её свойства. Например, если в ходе взаимодействия между объектами один объект передаёт другому некоторую субстанцию, но при этом сам её не теряет, то эта субстанция называется информацией, а взаимодействие — информационным.

Информация имеет ряд особенностей:

- она нематериальна;

Нематериальность информации понимается в том смысле, что нельзя измерить ее параметры известными физическими методами и приборами. Информация не имеет массы, энергии и т. п.

- информация хранится и передается с помощью материальных носителей;

Информация хранится и передается на материальных носителях. Такими носителями являются мозг человека, звуковые и электромагнитные волны, бумага, машинные носители (магнитные и оптические диски, магнитные ленты и барабаны) и др.

- любой материальный объект содержит информацию о самом себе или о другом объекте.

Информации присущи следующие свойства

1. Информация доступна человеку, если она содержится на материальном носителе.

Поэтому необходимо защищать материальные носители информации, так как с помощью материальных средств можно защищать только материальные объекты.

2. Информация имеет ценность.

Ценность информации определяется степенью ее полезности для владельца. Обладание истинной (достоверной) информацией дает ее владельцу определенные преимущества. Истинной или достоверной информацией является информация, которая с достаточной для владельца (пользователя) точностью отражает объекты и процессы окружающего мира в определенных временных и пространственных рамках.

Информация, искаженно представляющая действительность (недостоверная информация), может нанести владельцу значительный материальный и моральный ущерб. Если информация искажена умышленно, то ее называют дезинформацией.

Законом «Об информации, информатизации и защите информации» гарантируется право собственника информации на е` использование и защиту от доступа к ней других лиц (организаций).

Если доступ к информации ограничивается, то такая информация является конфиденциальной. Конфиденциальная информация может содержать государственную или коммерческую тайну.

Коммерческую тайну могут содержать сведения, принадлежащие частному лицу, фирме, корпорации и т. п. Государственную тайну могут содержать сведения, принадлежащие государству (государственному учреждению). В соответствии с законом «О государственной тайне» сведениям, представляющим ценность для государства, может быть присвоена одна из трёх возможных степеней секретности. В порядке возрастания ценности (важности) информации ей может быть присвоена степень (гриф) «секретно», «совершенно секретно» или «особой важности». В государственных учреждениях менее важной информации может присваиваться гриф «для служебного пользования».

Для обозначения ценности конфиденциальной коммерческой информации используются три категории:

- «коммерческая тайна - строго конфиденциально»;

- «коммерческая тайна - конфиденциально»;

- «коммерческая тайна».

Используется и другой подход к градации ценности коммерческой информации:

- «строго конфиденциально - строгий учёт»;

- «строго конфиденциально»;

- «конфиденциально».

3. Ценность информации изменяется во времени.

Как правило, со временем ценность информации уменьшается. Зависимость ценности информации от времени приближенно определяется в соответствии с выражением:

где С0 - ценность информации в момент ее возникновения (получения); t - время от момента возникновения информации до момента определения ее стоимости; τ - время от момента возникновения информации до момента ее устаревания.

Время, через которое информация становится устаревшей, меняется в очень широком диапазоне. Так, например, для пилотов реактивных самолетов, автогонщиков информация о положении машин в пространстве устаревает за доли секунд. В то же время информация о законах природы остается актуальной в течение многих веков.

4. Информация покупается и продается.

Ее правомочно рассматривать как товар, имеющий определенную цену. Цена, как и ценность информации, связаны с полезностью информации для конкретных людей, организаций, государств. Информация может быть ценной для ее владельца, но бесполезной для других. В этом случае информация не может быть товаром, а, следовательно, она не имеет и цены. Например, сведения о состоянии здоровья обычного гражданина являются ценной информацией для него. Но эта информация, скорее всего, не заинтересует кого-то другого, а, следовательно, не станет товаром, и не будет иметь цены.

Информация может быть получена тремя путями:

- проведением научных исследований;

- покупкой информации;

- противоправным добыванием информации.

Как любой товар, информация имеет себестоимость, которая определяется затратами на ее получение. Себестоимость зависит от выбора путей получения информации и минимизации затрат при добывании необходимых сведений выбранным путем. Информация добывается с целью получения прибыли или преимуществ перед конкурентами, противоборствующими сторонами. Для этого информация:

- продается на рынке;

- внедряется в производство для получения новых технологий и товаров, приносящих прибыль;

- используется в научных исследованиях;

- позволяет принимать оптимальные решения в управлении.

Существует несколько подходов к измерению количества информации.

А. Энтропийный подход.

В теории информации количество информации оценивается, мерой уменьшения у получателя неопределенности (энтропии) выбора или ожидания событий после получения информации. Количество информации тем больше, чем ниже вероятность события. Энтропийный подход широко используется при определении количества информации, передаваемой по каналам связи. Выбор при приеме информации осуществляется между символами алфавита в принятом сообщении. Пусть сообщение, принятое по каналу связи, состоит из N символов (без учета связи между символами в сообщении). Тогда количество информации в сообщении может быть подсчитано по формуле Шеннона:

где Pi - вероятность появления в сообщении символа i; k - количество символов в алфавите языка.

Анализ формулы Шеннона показывает, что количество информации в двоичном представлении (в битах или байтах) зависит от двух величин: количества символов в сообщении и частоты появления того или иного символа в сообщениях для используемого алфавита. Этот подход абсолютно не отражает насколько полезна полученная информация, а позволяет определить лишь затраты на передачу сообщения.

Б. Тезаурусный подход.

Этот подход предложен Ю. А. Шредером. Он основан на рассмотрении информации как знаний. Согласно этому подходу количество информации, извлекаемое человеком из сообщения, можно оценить степенью изменения его знаний. Структурированные знания, представленные в виде понятий и отношений между ними, называются тезаурусом. Структура тезауруса иерархическая. Понятия и отношения, группируясь, образуют другие, более сложные понятия и отношения.

Знания отдельного человека, организации, государства образуют соответствующие тезаурусы. Тезаурусы организационных структур образуют тезаурусы составляющих их элементов. Так тезаурус организации образуют, прежде всего, тезаурусы сотрудников, а также других носителей информации, таких как документы, оборудование, продукция и т. д.

Для передачи знаний требуется, чтобы тезаурусы передающего и принимающего элемента пересекались. В противном случае владельцы тезаурусов не поймут друг друга.

Тезаурусы человека и любых организационных структур являются их капиталом. Поэтому владельцы тезаурусов стремятся сохранить и увеличить свой тезаурус. Увеличение тезауруса осуществляется за счет обучения, покупки лицензии, приглашения квалифицированных сотрудников или хищения информации.

В обществе наблюдаются две тенденции: развитие тезаурусов отдельных элементов (людей, организованных структур) и выравнивание тезаурусов элементов общества.

Выравнивание тезаурусов происходит как в результате целенаправленной деятельности (например, обучения), так и стихийно. Стихийное выравнивание тезаурусов происходит за счет случайной передачи знаний, в том числе и незаконной передачи.

В. Практический подход.

На практике количество информации измеряют, используя понятие «объем информации». При этом количество информации может измеряться в количестве бит (байт), в количестве страниц текста, длине магнитной ленты с видео- или аудиозаписью и т.п. Однако очевидно, что на одной странице информации может содержаться больше или меньше, по крайней мере, по двум причинам. Во-первых, разные люди могут разместить на странице различное количество сведений об одном и том же объекте, процессе или явлении материального мира. Во-вторых, разные люди могут извлечь из одного и того же текста различное количество полезной, понятной для них информации. Даже один и тот же человек в разные годы жизни получает разное количество информации при чтении книги.

В результате копирования без изменения информационных параметров носителя количество информации не изменяется, а цена снижается. Примером копирования без изменения информационных параметров может служить копирование текста с использованием качественных копировальных устройств. Текст копии, при отсутствии сбоев копировального устройства, будет содержать точно такую же информацию, как и текст оригинала. Но при копировании изображений уже не удастся избежать искажений. Они могут быть только большими или меньшими.

В соответствии с законами рынка, чем больше товара появляется, тем он дешевле. Этот закон полностью справедлив и в отношении копий информации. Действие этого закона можно проследить на примере пиратского распространения программных продуктов, видео продукции и т.п.

В качестве предмета защиты рассматривается информация, хранящаяся, обрабатываемая и передаваемая в компьютерных системах. Особенностями этой информации являются:

- двоичное представление информации внутри системы, независимо от физической сущности носителей исходной информации;

- высокая степень автоматизации обработки и передачи информации;

- концентрация большого количества информации в АС.

Объектом защиты информации является компьютерная система или автоматизированная система обработки данных (АСОД). В работах, посвященных защите информации в автоматизированных системах, до последнего времени использовался термин АСОД, который все чаще заменяется термином АС.

Под системой защиты информации в АС понимается единый комплекс правовых норм, организационных мер, технических, программных и криптографических средств, обеспечивающий защищенность информации в АС в соответствии с принятой политикой безопасности.

Взаимосвязанные методы, модели и алгоритмы, программные, аппаратные и организационные средства должны образовывать четкую систему, определяющую политику безопасности (ПБ) информации при ее обработке, хранении и передаче в АС.

Политика – это набор формальных правил (официально утвержденных или традиционно сложившихся), которые регламентируют функционирование механизма информационной безопасности.

Политика реализуется средствами аутентификации и идентификации, контроля доступа (создания и утверждения набора правил, определяющих для каждого участника информационного процесса разрешение на доступ к ресурсам и уровень этого доступа). Контроль доступа невозможен без авторизации – формирования профиля прав для участника информационного обмена (аутентифицированного или анонимного) из набора правил контроля.

Политика реализуется средствами аудита и мониторинга – регулярного отслеживания событий, происходящих в процессе обмена информацией, с регистрацией и анализом предопределенных значимых или подозрительных событий. При этом мониторинг обычно производится в режиме реального времени.

Политика безопасности должна предусматривать также реагирование на инциденты, управление конфигурацией, управление пользователями (обеспечение условий их работы в среде информационного обмена в соответствии с требованиями безопасности); управление рисками (обеспечение соответствия возможных потерь от нарушения информационной безопасности мощности защитных средств); обеспечение устойчивости (поддержание среды информационного обмена в минимально допустимом работоспособном состоянии в условиях воздействия деструктивных факторов).

В инструментарий информационной безопасности входят:

-персонал – люди, которые будут обеспечивать реализацию политики безопасности;

-нормативное обеспечение – документы, создающие правовую основу для системы защиты;

-модели безопасности – схемы обеспечения безопасности, заложенные в конкретную информационную систему;

-криптография;

-антивирусное обеспечение;

-межсетевые экраны;

-сканеры безопасности – устройства проверки качества функционирования модели безопасности для данной АС;

-систем обнаружения атак – устройства мониторинга активности в информационной среде, иногда с возможностью принятия самостоятельного участия в активной деятельности;

-резервное копирование;

-дублирование (резервирование) – создание альтернативных устройств, необходимых для функционирования информационной среды, на случай выхода из строя основных;

-аварийный план – набор мероприятий – предназначенных для претворения в жизнь в случае, если события произошли не так, как предусматривалось правилами информационной безопасности;

-обучение пользователей – подготовка активных участников информационной среды для работы в условия соответствия требованиям информационной безопасности.

Все эти перечисленные средства характерны для предприятия, развивающего службу информационной безопасности.

Специалист, отвечающий за практическое воплощение политики безопасности – администратор безопасности, становится все более значимой фигурой в целом ряде организаций.

Только наличие двух специалистов – сетевого администратора и администратора безопасности, на первом из которых лежит повседневное управление функционирование автоматизированной системы, а на втором – формирование политики информационной безопасности и постоянный контроль за ее реализацией, позволяет адекватно решать вопросы обеспечения безопасности в информационных системах.

Администратор безопасности должен сочетать высокую эрудицию в области организационно-правовых знаний с глубокими знаниями вопросов аппаратно-программного обеспечения вычислительной техники, не уступающим знаниям системного администратора.

Теоретическим базисом для его деятельности должна быть теория обеспечения безопасности информации, которая возникла из прикладной теории алгоритмов, теории передачи информации, теории кодирования, криптологии, рассматриваемых с единых системных позиций.

Лекция 02

«ПОНЯТИЕ СЛОЖНОЙ СИСТЕМЫ: ЭЛЕМЕНТЫ И ПОДСИСТЕМЫ, УПРАВЛЕНИЕ И ИНФОРМАЦИЯ, САМООРГАНИЗАЦИЯ»

Формирование системного анализа в качестве самостоятельного исследовательского направления обусловлено общей тенденцией развития человечества, которая сложилась к настоящему времени. Эта тенденция проявляется: во все более глубоком рациональном вмешательстве в организационную деятельность человека, а также в процессы выработки и принятия им решений.

В 70гг ХХ столетия в научной литературе появилась масса терминов: “системная революция”, “системный подход”, “общая теория систем”, “системный анализ операций” и т.д. Это говорило об объединении усилий специалистов различных профессий для решения общих задач, связанных с изучением, проектированием и управлением сложными системами. Причём, начиная с этого времени понятие системности стало не только теоретической категорией, но осознанной необходимостью в практической деятельности. Именно это “системное движение”, привело к интеграции отдельных научных направлений по созданию науки, получившей название “системный анализ”, которая в настоящее время выступает как самостоятельная дисциплина.

Предметом изучения системного анализа является система, независимо от её природы, организации, способа существования и способа описания.

Целью рассмотрения системы является решение задач анализа, управления и проектирования.

Определение:

Система есть совокупность элементов (подсистем). При определённых условиях элементы сами могут рассматриваться как системы, а исследуемая система – как элемент более сложной системы:

- связи между элементами в системе превосходят по силе связи этих элементов с элементами, не входящими в систему. Это свойство позволяет выделить систему из среды;

- для любой системы характерно существование интегративных качеств (свойство эмерджентности), которые присущи системе в целом, но не свойственны ни одному её элементу в отдельности: систему нельзя сводить к простой совокупности элементов;

- система всегда имеет цели, для которых она функционирует и существует.

Одной из характерных тенденций развития общества в настоящее время является появление больших чрезвычайно сложных систем (крупные автоматизированные, технологические, энергетические, гидротехнические, информационные и другие комплексы). С другой стороны стремление познать мир обитания человечества как сложную многофункциональную систему стало реальностью сегодняшнего дня. Все это привело к необходимости определить понятие сложной системы, разработать методические принципы её исследования, управления и проектирования.

В настоящее время однозначного, чёткого определения сложной системы нет. Известны различные подходы и предложены различные формальные признаки её определения. Так, одни учёные предлагают относить к сложным системы имеющие 104-107 элементов; к ультрасложным - системы, состоящие из 107-1030 элементов; и к суперсистемам – системы из 1030-10200 элементов. Такой подход имеет тот недостаток, что данное определение сложности является относительным, а не абсолютным. Другие предлагают к сложным относить системы, описываемые на языке теоретико-вероятностных методов (мозг, экономика, форма и т.п.).

Наиболее чётким на наш взгляд, определением сложных систем является определение:

Сложной системой называется система, в модели которой недостаточно информации для эффективного управления этой системой.

Таким образом, признаком простоты системы является достаточность информации для её управления. Если же результат управления, полученный с помощью модели, будет неожиданным, то такую систему относят к сложной.

Для перевода системы в разряд простой необходимо получение недостающей информации о ней и включение её в модель.

От сложных систем необходимо отличать большие системы.

Определение:

Система, для актуализации модели которой в целях управления недостаёт материальных ресурсов (машинного времени, ёмкости памяти, других материальных средств моделирования) называется большой.

К таким системам относятся экономические, организационно-управленческие, нейрофизиологические, биологические и т.п. системы.

Способом перевода больших систем в простые является создание новых более мощных средств вычислительной техники.

Как видно из определений, понятия большой и сложной системы являются разными. Однако в литературе эти понятия определены не однозначно. Некоторые авторы вообще не используют этих понятий, другие используют их как синонимы, а некоторые считают разницу между ними чисто количественной.

Чтобы ещё раз подчеркнуть существенную разницу между понятиями «большая» и «сложная» системы приведём следующую таблицу 02-1.

В таблице 02-1 знаком “+” отличены классификационные признаки систем. Поясним, например, почему шифрозамок отнесён к классу больших и простых систем. Эта система – большая, так как у похитителя может не хватить ресурса времени для вскрытия замка; а простая – потому что вскрытие сводится к простому многовариантному перебору шифров.

Таблица 02-1

Система

Малая

Большая

Простая

Сложная

1

Исправный бытовой прибор для пользователя

+

+

2

Неисправный бытовой прибор для мастера

+

+

3

Шифрозамок для похитителя

+

+

4

Мозг, живой организм

+

+

На рисунке 02-1 показаны всевозможные сочетания признаков систем простоя-сложная, малая-большая.

Рисунок 02-1

По своим свойствам системы могут быть классифицированы по следующим признакам.

Динамические системы характеризуются тем, что их выходные сигналы в данный момент времени определяются характером входных воздействий в прошлом и настоящем (зависит от предыстории). В противном случае системы называют статическими.

Примером динамических систем является биологические, экономические, социальные системы; такие искусственные системы как завод, предприятия, поточная линия и т.д.

Детерминированной называют систему, если ее поведение можно абсолютно точно предвидеть. Система, состояния которой зависит не только от контролируемых, но и от неконтролируемых воздействий или если в ней самой находится источник случайности, носит название стохастической. Приведём пример стохастических систем, это – заводы, аэропорты, сети и системы ЭВМ, магазины, предприятия бытового обслуживания и т.д.

Различают системы линейные и нелинейные.Для линейных систем реакция на сумму двух иди более различных воздействий эквивалентна сумме реакций на каждое возмущение в отдельности, для нелинейных – это не выполняется.

Если параметры систем изменяются во времени, то она называется нестационарной, противоположным понятием является понятие стационарной системы.

Пример нестационарных систем – это системы, где процессы, например, старения являются на данном интервале времени существенными.

Если вход и выход системы измеряется или изменяется во времени дискретно, через шаг Δt, то система называется дискретной. Противоположным понятием является понятие непрерывной системы. Например: ЭВМ, электронные часы, электросчётчик – дискретные системы; песочные часы, солнечные часы, нагревательные приборы и т.д. – непрерывные системы.

Классификация систем по их свойствам представлена на рисунке 02-2.

Рисунок 02-2

(Стрелки указывают возможный набор свойств системы).

Искусственная система как средство достижения цели

Процесс проектирования любой искусственной системы начинается с формирования цели. Отказ от чёткого её определения заставляет проектировщиков ориентироваться лишь на собственные цели, которые, как правило, связаны со стремлением минимизировать материальные затраты и, возможно, максимизировать доход. И в конечном счёте усилия большого коллектива могут быть напрасными, приведут к большим затратам материальных ресурсов, не дадут ожидаемых результатов. Хорошо организованный ночной рейд эскадрильи с воздушным десантом не принесёт желаемого успеха боевой операции, если координаты цели неверны.

О значении правильного выбора цели говорит также известный исторический пример организации противовоздушной обороны английских торговых судов во время второй мировой войны. В качестве цели было выбрано уничтожение вражеских самолётов с помощью зенитных орудий. Так как качающееся палубы судов и недостаточно квалифицированные расчёты артиллеристов на торговых судах не обеспечивали достижения цели, то было решено передать зенитки торговых судов наземным батареям. Однако специалисты во время поняли, что цель должна быть другой, не уничтожение вражеских самолётов, а защита торговых судов. Зенитные установки были оставлены на палубах, в результате немецкие лётчики вынуждены были бомбить суда с больших высот и с меньшей точностью. Сокращение потерь судов намного перекрывало затраты на установку и обслуживание орудий.

Одной цели может соответствовать несколько систем и наоборот, одной системе может соответствовать несколько целей. Покажем это на нескольких элементарных примерах, приведённых в таблице:

Таблица 02-2

Цель функционирования

Система

1

В любой момент разрезать бумагу, ткань, и т.д.

Ножницы

2

В любой момент иметь возможность записи текста

Карандаш, авторучка, шариковая ручка

3

Возможность передачи звуковой информации на расстояния почти мгновенно

Системы радиовещания, телефон

4

Передача информации на расстояния с большой скоростью

Телеграф, телетайп, сеть Интернет

5

Передача информации на большие расстояния

Системы почтовой связи

Подводя итоги сказанному можно сформулировать тезис: «система есть средство достижения цели». Он полностью соответствует назначению и смыслу создания искусственных систем, но для систем природного происхождения он требует ответа на вопрос: Кто, и с какой целью создал Вселенную и человека?

Здесь возможны несколько подходов к ответу на вопрос.

1. Объекты естественного происхождения не являются системами так как, не существовало цели, с которой они возникли. Именно так и предлагается поступить с системами естественного происхождения: нет цели – нет системы, это – объекты; например, лес – это объект.

2. Определение системы признать правомерным для всех объектов реального мира, но обсуждаемый тезис считать правомерным только для искусственных систем.

3. Признать существование Того, кто с определённой целью создал весь вселенский мир.

Мы придерживаемся второго варианта. Вся система вселенского пространства вобрала в себя всю “мудрость” развития, накопленную миллиардами лет. Глобальная система систем иерархически выстроенная, с чётко отложенной саморегуляцией и саморазвитием формировалась постепенно, изменялась сама и изменяла свои цели в соответствии с Законами Природы. Какова цель существования всех этих взаимодействующих и взаимоподчинённых систем? Это является основным вопросом науки! Возможно, глобальная цель связана с самосовершенствованием? Ведь в противном случае вся эта глобальная система систем погибла бы!

Человек и человечество всего лишь составляющая этой единой системы. Тогда становится ясной цель существования человека – самосовершенствование. Таким образом, для гармоничной жизни человеку нужно жить не по своим, придуманным законам, а по объективным Законам Природы, не нарушая их. Только при этом условии можно решить проблемы экологии и устойчивого развития человечества.

Системный подход как новая методология науки и практики сложилась ко второй половине XX столетия. Он является синтетическим объединением («сплавом») редукционизма, холизма и структурализма, которое произошло на основе принципа дополнительности. Вместе с тем он является качественно новым подходом в изучении, проектировании и синтезе систем.

Методология системного подхода при решении задач анализа систем сводится к тому, что исследования объекта ориентируются на раскрытие его интегративных качеств, на выявлении многообразных связей и механизмов, обеспечивающих эти качества.

Методология системного подхода при решении задач проектирования и синтеза систем состоит в следующем. Задача проектирования системы расчленяется на подзадачи проектирования её элементов. Причём, каждый из элементов должен рассматриваться не сам по себе, а во взаимодействии с другими элементами. Решение подзадач должно происходить при условии обеспечения интегративных качеств функционирования всей системы. Для выполнения этого требования необходим единый идеологический и организационный план проектирования, связывающий все фазы в целом, начиная от исследовательской проработки до фазы изготовления и эксплуатации. Основные черты методики проектирования - системность и оптимизационность, использование имитационного моделирования и вычислительной техники. Обычно задача проектирования на данном уровне развития науки и вычислительной техники чаще всего осуществляется как многократно решаемая задача анализа множества вариантов проекта системы.

Суть системного прохода можно более чётко описать с помощью формализованной структуры, которая может быть применена в практике решения задач анализа, синтеза и проектирования:

S=<G, W, M, Q, Str(org), ier, P, R, a, E, B, I, C>

Здесь:

S - совокупность методологических требований системного подхода;

G - формулирование цели проектирования, синтеза системы или ее выявление при решении задачи анализа;

W - определение интегративных качеств системы как целого и (или) методов их установления;

M - членение системы на множество её составляющих подсистем;

Q - установление цели функционирования свойств каждой подсистемы и изучение образования механизма обеспечения цели системы как целого и её интегративных свойств;

Str(org) - анализ структуры (организации) системы, изучение ее влияния на интегративные качества системы в целом;

ier - определение уровня иерархии данной системы и ее подсистем в иерархической структуре систем, куда входит данная система;

P, R, a - влияние свойств (P) системы на другие системы; а также выявление отношений (R) связей (a) данной системы и ее подсистем с другими системами (внешней средой);

Е - изучение влияния внешней среды на систему;

В - анализ процесса функционирования системы, в том числе, ее развития;

I - анализ информационных потоков, циркулирующих в системе и поступающих из вне для целей управления ею;

С - описание принципов управления и процесса управления системой. Приведённая структура алгоритма системного подхода не является единственной. Они достаточно многочисленны, однако принципиальных различий нет, отличия проявляются только в деталях. Подчеркнём также, что в практике использования алгоритма системного подхода возможен циклический, итерационный характер его применения как в целом, так и отдельных его этапов.

Системность мироздания и процессов его познания впервые была осознана философией приблизительно за 100 лет до возникновения этого понятия в науке и практике.

Кибернетика. Историческим предвестником современных системных представлений были работы М.А. Ампера. Используя системные представления, говорил о необходимости формирования науки об управлении государством, которую назвал кибернетикой (наукой об управлении).

Андре-Мари Ампер (фр. Andre Marie Ampere; 22 января 1775 — 10 июня 1836) — знаменитый французский физик, математик и естествоиспытатель, член Парижской Академии наук (1814). Член многих академий наук, в частности Петербургской Академии наук (1830).

Почти одновременно с Ампером польский учёный-философ Ф.‑Б. Трентовский издал свою книгу «Отношение философии к кибернетике как искусству управления народом», где говорил об управлении государством как системой.

Фердинанд-Бронислав Трентовский - польский философ (1808-69). Образование получил в Варшавском университете; был преподавателем латинского языка, истории и литературы в Щучине. Он был приват-доцентом во Фрейбурге, потом переселился в Париж.

Однако идеи кибернетики середины XIX века были забыты и человечество вернулось к ним, когда вышли в свет труды русского учёного А.А. Богданова, создавшего новую науку - тектологию –«всеобщую организационную науку» (его работы вышли в свет в 1911 - 1925 гг).

Богданов Александр Александрович (настоящая фамилия — Малиновский) (1873-1928), русский философ, учёный, политический. Предложил идею создания новой науки — тектологии, предвосхитил некоторые положения кибернетики. С 1926 — организатор и директор первого в мире Института переливания крови; погиб, производя на себе опыт.

Она не только по своим идеям предвосхитила идеи современной кибернетики Н. Винера, но и внесла свой оригинальный вклад в системные представления. В частности Богданов А.А. дал понятие организации и считал, что организация системы тем выше, чем сильнее свойства целого отличаются от простой суммы его частей. В его трудах рассматривалось понятие открытых и замкнутых систем, обратной связи, устойчивости и изменчивости.

Следующей ступенью системных представлений были труды советского физиолога Анохина П.К., который в 1932г. создал теорию, ставшей основой нейрокибернетики. Его теория получила развитие в биологии, физиологии, философии, в теории принятия управленческих решений (приоритет идей Анохина П.К. впоследствии признал Н. Винер).

Пётр Кузьмич Анохин (1898, Царицын — 5 марта 1974, Москва) — советский физиолог, создатель теории функциональных систем, академик АМН СССР (1945) и АН СССР (1966), лауреат Ленинской премии (1972).

Однако общее признание идеи системности приходится на середину ХХ века. Это связано с вышедшей в 1948 году книгой американского математика Н. Винера "Кибернетика". Предметом исследования кибернетики является система, независимо от е` свойств и особенностей.

Основной идеей кибернетики Винера является подобие процессов управления и связи в машинах, живых организмах и обществе. Эти процессы заключаются в приёме, передаче, хранении и переработке информации. Система, принимая информацию, использует е` для выбора оптимального поведения, которое может быть организовано лишь при использовании свойств обратной связи. Н. Винер почти одновременно со статистиком Р. А. Фишером и Р. Шенноном разработали статистическую теорию количества информации, отождествив информацию с отрицательной энтропией, которая становится наряду с понятиями вещества и энергии фундаментальными характеристиками явлений природы.

И хотя Н. Винер рассматривал свои идеи применительно только к системам, где возможна замена качественной стороны информации количественной, принципы управления применимы только для систем, имеющих чёткое формальное описание; а при моделировании интеллекта учитывается только логика, «кибернетика пускала тысячи корней, вербовала тысячи агентов».

Появилась кибернетика техническая, биологическая, медицинская, экономическая, лингвистическая и т.д.

ФИ́ШЕР (Fisher) РоналдЭйлмер (1890-1962) ‑английский учёный. Один из основоположников математической генетики и её приложений к эволюционной теории. Крупный специалист в области математической статистики.

КлодЭ́лвудШе́ннон (Shannon; 30 апреля 1916, Петоцки, Мичиган — 24 февраля 2001, Медфорд, Массачусетс) — американский математик и инженер, его работы являются синтезом математических идей с конкретным анализом чрезвычайно сложных проблем их технической реализации.

Кибернетика Винера внесла свой вклад в теорию имитационного моделирования на ЭВМ, что позволило производить анализ систем на этапе их проектирования, производить синтез систем; привела к всеобщей компьютеризации общества, подготовила базу для создания общей теории систем.

Системотехника вызвана к жизни появлением больших технических систем, которые могут иметь огромное количество разнообразных составляющих, часто разбросанных по обширной территории и объединённых в одно целое средствами автоматизированного управления, что требует высокой скорости переработки информации. Последнее возможно только с использованием ЭВМ.

Приблизительно в середине ХХ столетия, системотехника как наука начала формироваться, когда началась ломка сложившихся традиций в инженерной практике.

Это объяснялось:

1. потребностями повышения производительности труда и созданием больших систем;

2. формированием нового методологического принципа науки и практики - системного подхода;

Цель создания системотехники –«сократить разрывы во времени между научными открытиями и их приложением и между возникновением человеческих потребностей и производством новых систем, призванных удовлетворить эти потребности».

Методологией системотехники является методология системного подхода - методология планирования, разработки и создания систем как единого целого.

Создателем системы является системотехник –«инженер инженеров», специалист широкого профиля, способный объединить специалистов разных специальностей, связать множество решений частных задач в единое, подчинив общей цели.

Системный анализ является родственным к системотехнике направлением, но обычно понимается более широко, охватывая нетехнические вопросы проектирования, организации и управления.

Объектами его исследования являются большие и сложные системы, которые являются одновременно открытыми (взаимодействующими с внешней средой) и в состав которых входит человеческий фактор.

Основу методологии системного анализа так же составляет системный подход, для которого определяющим является представление о целостности исследуемых, проектируемых и синтезируемых объектов. Методологически системный анализ направлен на исследование причин сложности систем и их устранения. Системный анализ является междисциплинарной наукой объединяющей как неформальные эвристические, так и математические методы.

Общая теория систем является следующим шагом развития науки о системах. Её формирование началось со второй половины ХХ века и ещё далеко не завершено.

Предметом её исследования является классы систем, объединённых не только по традиционным признакам (биологические, технические, социальные и т.д. системы), но и по видам отношений элементов в системе. Под термином «отношение» понимается: структура, информация, ограничение, организация, управление и т.п.

Наименьшими классами систем являются классы изоморфных систем. В качестве представителя такого класса выбирается абстрактная система, описание которой стандартно и представимо с помощью ЭВМ.

Областью исследования науки о системах являются свойства классов систем, которые образуют разбиение множества систем на подмножества, что соответствует в традиционной науке подразделению на отдельные дисциплины и специальности.

Знания в науке о системах может быть получено как знания о классах систем математически или путём моделирования на ЭВМ. Развитие системных представлений изображено на рисунке 02-3.

Рисунок 03-3

Примерами математически полученных знаний о системах могут служить принципы максимума энтропии и минимума информации, закон необходимого разнообразия Эшби.

Примерами знаний, полученными моделированием на ЭВМ являются влияние количества переменных и связности системы на её устойчивость, влияние взаимосвязи между структурами и поведением системы и т.д.

Лекция 03

«ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ИХ КЛАССИФИКАЦИИ»

Основные понятия

Система (от греческого systemaцелое, составленное из частей соединение) — это совокупность элементов, взаимодействующих друг с другом, образующих определенную целостность, единство. Приведем некоторые понятия, часто ис­пользующиеся для характеристики системы.

  1. Элемент системы — часть системы, имеющая определенное функциональное назначение. Сложные элементы систем, в свою очередь состоящие из более простых взаимосвязанных элементов, часто называют подсистемами.

  2. Организация системы — внутренняя упорядоченность, согласованность взаимодействия элементов системы, проявляющаяся, в частности, в ограничении разнообразия состояний элементов в рамках системы.

  3. Структура системы — состав, порядок и принципы взаимодействия элементов системы, определяющие основные свойства системы. Если отдельные элементы системы разнесены по разным уровням и внутренние связи между элементами организованы только от вышестоящих к нижестоящим уровням и наоборот, то говорят об иерархической структуре системы. Чисто иерархические структуры встречаются практически редко, поэтому, несколько расширяя это понятие, под иерархической структурой обычно понимают и такие структуры, где среди прочих связей иерархические связи имеют главенствующее значение.

  4. Архитектура системы — совокупность свойств системы, существенных для пользователя.

  5. Целостность системы — принципиальная несводимость свойств системы к сумме свойств отдельных ее элементов (эмерджентность свойств) и, в то же время, зависимость свойств каждого элемента от его места и функции внутри системы.

Информационная система — взаимосвязанная совокуп­ность средств, методов и персонала, используемых для хра­нения, обработки и выдачи информации в интересах дости­жения поставленной цели.

В Федеральном законе «Об информации, информатизации и защите информации» дается следующее определение:

«Информационная система — организационно упорядочен­ная совокупность документов (массивов документов) и ин­формационных технологий, в том числе с использованием средств вычислительной техники и связи, реализующих ин­формационные процессы»

Классификация по масштабу

По масштабу информационные системы подразделяются на следующие группы:

  • одиночные;

  • групповые;

  • корпоративные.

Одиночные информационные системы реализуются, как правило, на автономном персональном компьютере (сеть не используется). Такая система может содержать несколько простых приложений, связанных общим информационным фондом, и рассчитана на работу одного пользователя или группы пользователей, разделяющих по времени одно рабочее место. Подобные приложения создайся с помощью так называемых настольных или локальных систем управления базами данных (СУБД). Среди локальных СУБД наиболее известными являются Clarion, Clipper, FoxPro, Paradox, dBase и Microsoft Access.

Групповые информационные системы ориентированы на коллективное использова­ние информации членами рабочей группы и чаще всего строятся на базе локальной вычислительной сети. При разработке таких приложений используются серверы баз данных (Называемые также SQL-серверами) для рабочих групп. Существует довольно большое количество различных SQL-серверов, как коммерческих, так и свободно распространяемых. Среди них наиболее известны такие серверы баз данных, как Oracle, DB2, Microsoft SQL Server, InterBase, Sybase, Informix.

Корпоративные информационные системы являются развитием систем для рабочих групп, они ориентированы на крупные компании и могут поддерживать тер­риториально разнесенные узлы или сети. В основном они имеют иерархическую структуру из нескольких уровней. Для таких систем характерна архитектура клиент-сервер со специализацией серверов или же многоуровневая архитектура. При разработке таких систем могут использоваться те же серверы баз данных, что и при разработке групповых информационных систем. Однако в крупных информационных системах наибольшее распространение получили серверы Oracle, DB2 и Microsoft SQL Server.

Для групповых и корпоративных систем существенно повышаются требования к надежности функционирования и сохранности данных. Эти свойства обеспечиваются поддержкой целостности данных, ссылок и транзакций в серверах баз.

Классификация по сфере применения

По сфере применения информационные системы обычно подразделяются на четыре группы:

  • системы обработки транзакций;

  • системы принятия решений;

  • информационно-справочные системы;

  • офисные информационные системы.

Системы обработки транзакций, в свою очередь, по оперативности обработки данных, разделяются на пакетные информационные системы и оперативные инфор­мационные системы. В информационных системах организационного управлений преобладает режим оперативной обработки транзакций, для отражения актуального состояния предметной области в любой момент времени, а пакетная обработка занимает весьма ограниченную часть.

Системы поддержки принятия решений — DSS (Decision Support Systeq) — представляют собой другой тип информационных систем, в которых с помощью довольно сложных запросов производится отбор и анализ данных в различных разрезах: временных, географических и по другим показателям.

Обширный класс информационно-справочных систем основан на гипертекстовых документах и мультимедиа. Наибольшее развитие такие информационные систе­мы получили в сети Интернет.

Класс офисных информационных систем нацелен на перевод бумажных документов в электронный вид, автоматизацию делопроизводства и управление документооборотом.

Классификация по способу организации

По способу организации групповые и корпоративные информационные системы подразделяются на следующие классы:

  • системы на основе архитектуры файл-сервер;

  • системы на основе архитектуры клиент-сервер;

  • системы на основе многоуровневой архитектуры;

  • системы на основе Интернет/интранет - технологий.

В любой информационной системе можно выделить необходимые функциональные компоненты, которые помогают понять ограничения различных архитектур информационных систем.

Архитектура файл-сервер только извлекает данные из файлов так, что дополнительные пользователи и приложения добавляют лишь незначительную нагрузку на центральный процессор. Каждый новый клиент добавляет вычислительную мощность к сети.

Архитектура клиент-сервер предназначена для разрешения проблем файл-сервер­ных приложений путем разделения компонентов приложения и размещения их там, где они будут функционировать наиболее эффективно. Особенностью архитектуры клиент-сервер является использование выделенных серверов баз данных, пони­мающих запросы на языке структурированных запросов SQL (Structured Query Language) и выполняющих поиск, сортировку и агрегирование информации.

В настоящее время архитектура клиент-сервер получила признание и широкое распространение как способ организации приложений для рабочих групп и информационных систем корпоративного уровня. Подобная организация работы повышает эффективность выполнения приложений за счет использования воз­можностей сервера БД, разгрузки сети и обеспечения контроля целостности дан­ных.

Многоуровневая архитектура стала развитием архитектуры клиент-сервер и в своей классической форме состоит из трех уровней:

- нижний уровень представляет собой приложения клиентов, имеющие программный интерфейс для вызова приложения на среднем уровне;

- средний уровень представляет собой сервер приложений;

- верхний уровень представляет собой удаленный специализированный сервер базы данных.

Трехуровневая архитектура позволяет еще больше сбалансировать нагрузку на разные узлы и сеть, а также способствует специализации инструментов для разработки приложений и устраняет недостатки двухуровневой модели клиент-сервер.

В развитии технологии Интернет/интранет основной акцент пока что делается на разработке инструментальных программных средств. В то же время наблюдается отсутствие развитых средств разработки приложений, работающих с базами данных. Компромиссным решением для создания удобных и простых в использовании и сопровождении информационных систем, эффективно работающих с базами данных, стало объединение Интернет/интранет-технологии с многоуровневой архитектурой. При этом структура информационного приложения приобретает следующий вид: браузер — сервер приложений — сервер баз данных — сервер динамических страниц — web-сервер.

По характеру хранимой информации БД делятся на фактографические и документальные. Если проводить аналогию с описанными выше примерами информационных хранилищ, то фактографические БД — это картотеки, а документальные — это архивы. В фактографических БД хранится краткая информация в строго определенном формате. В документальных БД — всевозможные документы. Причем это могут быть не только текстовые документы, но и графика, видео и звук (мультимедиа).

Автоматизированная система управления (АСУ) - это комплекс технических и программных средств, совместно с организационными структурами (отдельными людьми пли коллективом), обеспечивающий управление объектом (комплексом) в производственной, научной или общественной среде.

Выделяют информационные системы управления образования (Например, кадры, абитуриент, студент, библиотечные программы). Автоматизированные системы для научных исследований (АСНИ), представляющие собой программно-аппаратные комплексы, обрабатывающие данные, поступающие от различного рода экспериментальных установок и измерительных приборов, и на основе их анализа облегчающие обнаружение новых эффектов и закономерностей. Системы автоматизированного проектирования и геоинформационные системы.

Систему искусственного интеллекта, построенную на основе высококачественных специальных знании о некоторой предметной области (полученных от экспертов - специалистов этой области), называют экспертной системой. Экспертные системы - один из немногих видов систем искусственного интеллекта - получили широкое распространение, и нашли практическое применение. Существуют экспертные системы по военному делу, геологии, инженерному делу, информа­тике, космической технике, математике, медицине, метеорологии, промышленности, сельскому хозяйству, управлению, физике, химии, электронике, юриспруденции и т.д. И только то, что экспертные системы остаются весьма сложными, дорогими, а главное, узкоспециализированными программами, сдерживает их еще более широкое распространение.

Экспертные системы (ЭС) - это компьютерные программы, созданные для выполнения тех видов деятельности, которые под силу человеку-эксперту. Они работают таким образом, что имитируют образ действий человека-эксперта, и существенно отличаются от точных, хорошо аргументированных алгоритмов и не похожи на математические процедуры большинства традиционных разработок.

ДОПОЛНИТЕЛЬНЫЙ МАТЕРИАЛ

Предметом нашего изучения являются информационные технологии, которые реализуются на практике в автоматизированных информационных системах (АИС) различного назначения.

В качестве основных средств (инструмента) автоматизации профессиональной деятельности людей сегодня выступают средства ЭВТ и связи.

В качестве основного классификационного признака АИС целесообразно рассматривать особенности автоматизируемой профессиональной деятельности – процесса переработки входной информации для получения требуемой выходной информации, в котором АИС выступает в качестве инструмента должностного лица или группы должностных лиц, участвующих в управлении организационной системой.

В соответствии с предложенным классификационным при­знаком можно выделить следующие классы АИС:

  • автоматизированные системы управления (АСУ);

  • системы поддержки принятия решения (СППР);

  • автоматизированные информационно-вычислительные системы (АИВС);

  • автоматизированные системы обучения (АСО);

  • автоматизированные информационно-справочные систе­мы (АИСС).

Рассмотрим особенности каждого класса АИС и характери­стики возможных видов АИС в составе каждого класса.

Автоматизированные системы управления

Автоматизированная система управления представляет собой автоматизированную информационную систему, предназначенную для автоматизации всех или большинства задач управления, решаемых коллективным органом управления (министерством, дирекцией, правлением, службой, группой управления и т.д.). В зависимости от объекта управления различают АСУ персоналом и АСУ техническими средствами (АСУП и АСУТС). АСУ является организационной и технической основой реализации рациональной технологии коллективного решения задач управления в различных условиях обстановки. В этой связи разработка рациональной технологии организационного управления является определяющим этапом создания любой АСУ.

АСУП обеспечивает автоматизированную переработку информации необходимой для управления организацией в повседневной деятельности, а также при подготовке и реализации программ развития.

АСУТС предназначены для реализации соответствующих технологических процессов. Они являются по сути перёдаточным звеном между должностными лицами осуществ­ляющими управление техническими системами, и сами ми техническими системами.

В настоящее время АСУТС нашли широкое распространение во всех развитых государствах. Объясняется это тем, что управление существующими новейшими технологический процесс без применения АСУТС становится практически невозможным. Что касается АСУП, то в настоящее'. время такие системы широко используются в странах За­пада, и непрерывно ведутся работы по созданию новых систем, в том числе – на базе достижений в области искусственного интеллекта.

Системы поддержки принятия решений

Системы поддержки принятия решений (СППР) являются достаточно новым классом АИС, теория создания которых в настоящее время интенсивно развивается.

СППР называется АИС, предназначенная для автоматизации деятельности конкретных должностных лиц при выполнении ими своих должностных (функциональных) обязанностей в процессе управления персоналом и (или) техническими средствами.

Выделяются четыре категории должностных лиц, деятельность которых отличается различной спецификой пере­работки информации: руководитель, должностное лицо аппарата управления, оперативный дежурный, оператор. В соответствии с четырьмя категориями должностных лиц различают и четыре вида СППР: СППР руководителя (СППР Р), СППР должностного лица аппарата управления (СППР 0), СППР оперативного дежурного (СППР Д) и СППР оператора (СППР Оп).

Автоматизированные информационно-вычислительные системы

АИВС предназначены для решения сложных в математическом отношении задач, требующих больших объе­мов самой разнообразной информации. Таким образом видом деятельности автоматизируемом АИВС является проведение различных (сложных и «объемных») рас­четов; Эти системы используются для обеспечения научных исследований и разработок, а также как подси­стемы АСУ и СППР в тех случаях, когда выработка уп­равленческих решений должна опираться на сложные вычисления.

В зависимости от специфики области деятельности, в кото­рой используются АИВС, различают следующие b этих систем.

Информационно-расчетные системы

ИРС – это автоматизированная информационная система, предназначенная для обеспечения оперативных расче­тов и автоматизации обмена информацией между рабо­чими местами в пределах некоторой организации или системы организаций. ИРС обычно сопрягается с автоматизированной системой управления и в рамках послед­ней может рассматриваться как ее подсистема. Технической базой ИРС являются, как правило, сети больших, малых и микро-ЭВМ. ИРС имеют сетевую структуру и могут охватывать несколько десятков и даже сотен ра­бочих мест различных уровней иерархии. Основной сложностью при создании ИРС является обеспечение высокой оперативности расчетов и обмена информации в системе при строгом разграничении доступа должностных лиц к служебной информации.

Системы автоматизации проектирования

САПР – это автоматизированная информационная систе­ма, предназначенная для автоматизации деятельности подразделений проектной организации или коллектива специалистов в процессе разработки проектов изделий на основе применения единой информационной базы, математических и графических моделей, автоматизиро­ванных проектных и конструкторских процедур. САПР является одной из систем интегральной автоматизации производства, обеспечивающих реализацию автомати­зированного цикла создания нового изделия от предпроектных научных исследований до выпуска серийно­го образца.

В области экономики САПР могут использоваться при про­ектировании экономических информационных систем и их элементов. Кроме того, технология САПР может обеспечить создание автоматизированной системы ото­бражения обстановки на экране в процессе ведения экономических операций или в ходе деловых игр различных типов.

Проблемно-ориентированные имитационные системы

ПОИС предназначены для автоматизации разработки ими­тационных моделей в некоторой предметной области. Например, если в качестве предметной области взять развитие автомобилестроения, то любая модель, создаваемая в этой предметной области, может включать стандартные блоки, моделирующие деятельность предприятий, поставляющих комплектующие; собствен­но сборочные производства; сбыт, обслуживание и ре­монт автомобилей; рекламу и др. Эти стандартные блоки могут строиться с различной детализацией моделируемых процессов и различной оперативностью расчетов. Пользователь, работая с ПОИС, сообщает ей, какая мо­дель ему нужна (т.е. что необходимо учесть при моде­лировании и с какой степенью точности), а ПОИС авто­матически формирует имитационную модель, необходи­мую пользователю.

В состав программного обеспечения ПОИС входят банк типовых моделей (БТМ) предметных областей, плани­ровщик моделей, базы данных предметных областей, а также средства диалогового общения пользователя с ПОИС.

ПОИС является достаточно сложной АИС, реализуемой, как правило, с использованием технологии искусственного интеллекта на высокопроизводительных ЭВМ.

Моделирующее центры

МЦ — автоматизированная информационная система представляющая собой комплекс готовых к использова­нию моделей, объединенных единой предметной областью, информационной базой и языком общения с пользователями.

МЦ, так же как и ПОИС, предназначены для обеспечения проведения исследований на различных моделях. Но в отличие от ПОИС, МЦ не обеспечивают автоматизацию создания имитационных моделей, а предоставляют пользователю возможность комфортной работы с готовыми моделями.

МЦ могут являться системами как коллективного, так и индивидуального использования и в принципе не требуют для своей реализации мощных ЭВМ.

Автоматизированные системы обучения

Традиционные методы обучения специалистов в различных областях профессиональной деятельности складывались многими десятилетиями, в течение которых накоплен большой опыт.

Однако, как свидетельствуют многочисленные исследова­ния, традиционные методы обучения обладают рядом недостатков. К таким недостаткам следует отнести пас­сивный характер устного изложения, трудность органи­зации активной работы студентов, невозможность учета в полной мере индивидуальных особенностей отдельных обучаемых и т.д.

Одним из возможных путей преодоления этих трудностей является создание АСО – автоматизированных инфор­мационных систем, предназначенных для автоматизации подготовки специалистов с участием или без участия преподавателя и обеспечивающих обучение, подготовку учебных курсов, управление процессом обучения и оценку его результатов. Основными видами АСО являются автоматизированные системы программированного обучения (АСПО), системы обеспечения деловых игр (АСОДИ), тренажеры и тренажерные комплексы (ТиТК).

АСПО ориентированы на, обучение в основном по теоре­тическим разделам курсов и дисциплин. В рамках АСПО реализуются заранее подготовленные квалифициро­ванными преподавателями «компьютерные курсы». При этом учебный материал разделяется на порции (дозы) и для каждой порции материала указывается возможная реакция обучаемого. В зависимости от дей­ствий обучаемого и его ответов на поставленные вопросы АСПО формирует очередную дозу представляе­мой информации.

Наибольшую сложность при создании АСПО составляет разработка «компьютерного курса» для конкретной дисциплины. Именно поэтому в настоящее время наиболь­шее распространение получили «компьютерные курсы» по традиционным, отра6отанным в методическом плане дисциплинам (физике, элементарной математике, про­граммированию и т.д.).

АСОДИ предназначена для подготовки и проведения дело­вых игр, сущность которых заключается в имитации при­нятия должностными лицами индивидуальных и групповых решений в различных проблемных ситуациях путем игры по заданным правилам.

В ходе деловой игры на АСОДИ возлагаются следующие задачи:

  • хранение и предоставление обучаемым и руководителям игры текущей информации о проблемной среде в процессе деловой игры в соответствии с их компетенцией;

  • формирование по заданным правилам реакции проблемной среды на действия обучаемых;

  • обмен информацией между участниками игры (обучае­мыми и руководителями игры);

  • контроль и обобщение действий обучаемых в процессе деловой игры;

  • предоставление руководителям игры возможности вмешательства в ход игры, например, для смены обстановки.

Технической базой АСОДИ являются высокопроизводительные ЭВМ или локальные вычислительные сети. Методологической базой АСОДИ, как правило, является имитационное моделирование на ЭВМ.

ТиТК предназначены для обучения практическим навыкам работы на конкретных рабочих местах (боевых постах). Они являются средствами индивидуального (тренажеры) и группового (тренажерные комплексы) обучения.

ТиТК являются достаточно дорогостоящими средствами обучения, а их создание требует больших затрат времени. Однако их чрезвычайно высокая эффективность при обучении таких специалистов, как летчики, водители, операторы систем управления и т.д., позволяет считать их достаточно перспективными видами АСО.

Автоматизированные информационно-справочные

АИСС — это автоматизированная информационная система, предназначенная для сбора, хранения, поиска и выдачи в требуемом виде потребителям информации справочного характера. В зависимости от характера работы с информацией различают следующие виды АИСС:

  • автоматизированные архивы (АА);

  • автоматизированные системы делопроизводства (АСД);

  • автоматизированные справочники (АС) и картотеки (AK)

  • автоматизированные системы ведения электронных карт местности (АСВЭКМ) и др.

В настоящее время разработано большое количество разновидностей АИСС и их количество продолжает увеличиваться. АИСС создаются с использованием технологий баз данных, достаточно хорошо разработанной и получившей широкое распространение. Для создания АИС, как правило, не требуется высокопроизводительная вычислительная техника.

Простота Создания АИСС и высокий положительный эффект от их использования определили их активное пользование во всех сферах профессиональной (в том числе и управленческой) деятельности.

В процессе развития автоматизированных информационно-поисковых систем сформировались три вида информационного обслуживания документальное, фактографическое и концептографическое. Каждому из этих видов соответствует своя информационная система.

ДОКУМЕНТАЛЬНАЯ система, в течение уже многих веков обеспечивала информационное обслуживание общества в целом и различных его институтов, в том числе науки и техники.

Сущность документального обслуживания заключается в том, что информационные потребности членов общества удовлетворяются путем предоставления им первичных документов, необходимые сведения из которых потребители извлекают сами. Обычно грамотное документальное обслуживание осуществляется в два этапа: сначала потребителю предоставляется некоторая совокупность релевантных (релевантность - смысловое соответствие содержания документа информационному запросу {смысловое соответствие между двумя текстами}) его запросу вторичных документов (этот этап называется библиографическим), а затем, после отбора потребителем из этой совокупности определенного числа уже пертинентных (пертинентность - соответствие содержания документа информационной потребности конкретного специалиста) документов, ему предоставляют сами документы (этот этап называется библиотечным обслуживанием). Таким образом, потребность в информации при документальном обслуживании удовлетворяется опосредовано, через первичный документ.

В отличие от документального обслуживания ФАКТОГРАФИЧЕСКОЕ предполагает удовлетворение информационных потребностей непосредственно, т.е. путем представления потребителям самих сведений (отдельных данных, фактов, концепций). Эти сведения, также релевантные запросам потребителей, предварительно извлекаются информационными работниками из первичных документов и после определенной их обработки (оформления) представляются потребителям. Следует уточнить само понятие "фактографическая информация". ФАКТОГРАФИЧЕСКАЯ ИНФОРМАЦИЯ следует понимать сведения не только фактического характера, но и теоретического, предположительного, оценочного характера, т.е. включать и факты, и концепции, все то, что может быть объектом извлечения из текста, описания на определенном информационном языке, хранения и поиска в той или иной информационной системе.

Если в случае документального и фактографического обслуживания потребителю информации предоставляются документы или сведения, извлеченные из информационного потока, так сказать, в "натуральном" виде, то при КОНЦЕПТОГРАФИЧЕСКОМ обслуживании все это (документы и сведения) подвергаются интерпретации, оценке, обобщению со стороны информационного работника. В результате такой интерпретации формулируется так называемая ситуативная информация, содержащая в себе оценку рассматриваемых сведений, тенденций и перспективы развития отдельных научных и технических направлений, рекомендаций и пр. По этой причине под концептографическим обслуживанием можно также понимать формулирование и доведения до потребителей ситуативной информации, в явном виде не содержащейся в анализируемых источниках, а полученной в результате информационно-логического и концептографического анализа некоторой совокупности сообщений. Другими словами, в случае концептографического обслуживания потребителю представляются не только сведения о документе или сами сведения из документа, но и некоторая дополнительная информация, привнесенная информационным работником в процессе их интерпретации.

Все виды информационного обслуживания функционируют на основе своих специфичных рядов вторичных документов. По сути дела каждая из разновидностей обслуживания сводиться к созданию своего ряда вторичных документов и доведению их до потребителя различными средствами и в различных режимах информационного обслуживания.

Существенное повышение эффективности информационных систем в настоящих условиях, когда открыты возможности внедрения в информационный процесс высокопроизводительных технических средств, может быть достигнута за счет их автоматизации. Появление автоматизированных информационных систем - результат объективного процесса, обусловленного научно-технической революцией. Эти системы, интегрируя информацию, обеспечивают комплексное решение задач управления.

Лекция 04(2 часа)

Тема:

«УГРОЗЫ БЕЗОПАСНОСТИ ИНФОРМАЦИИ В АВТОМАТИЗИРОВАННЫХ СИСТЕМАХ»

Аксиомы защищённых АС

Аксиома 1. В защищённой АС всегда присутствует активный компонент (субъект), выполняющий контроль операций субъектов над объектами. Этот компонент отвечает за реализацию некоторой политики безопасности.

Аксиома 2. Для выполнения в защищённой АС операций над объектами необходима дополнительная информация о разрешённых и запрещённых операциях субъектов с объектами.

Аксиома 3. Все вопросы безопасности информации в АС описываются доступами субъектов к объектам.

Определение:

Политика безопасности в общем случае выражает нестационарное состояние защищённости. Защищаемая система может изменяться, дополняться новыми компонентами, т. е. политика безопасности должна быть поддержана во времени, т.е. определена процедура управления безопасностью.

А нестационарность защищаемой АС и реализация политики безопасности в конкретных конструкциях системы предопределяет рассмотрение задачи гарантирования заданной политики безопасности.

Таким образом, при рассмотрении политики безопасности решается четыре класса задач:

а) формулирование и изучение политик безопасности;

б) реализация политик безопасности;

в) гарантирование заданной политики безопасности;

д) управление безопасностью.

С позиции обеспечения безопасности информации в АС такие системы целесообразно рассматривать в виде единства трёх компонент, оказывающих взаимное влияние друг на друга:

  • информация;

  • технические и программные средства;

  • обслуживающий персонал и пользователи.

В отношении приведённых компонент иногда используют и термин «информационные ресурсы», который в этом случае трактуется значительно шире, чем в Федеральном законе РФ «Об информации, информатизации и защите информации».

Целью создания любой АС является удовлетворение потребностей пользователей в своевременном получении достоверной информации и сохранении ее конфиденциальности (при необходимости).

Информация является конечным «продуктом потребления» в АС и выступает в виде центральной компоненты системы. Безопасность информации на уровне АС обеспечивают две другие компоненты системы. Причём эта задача должна решаться путем защиты от внешних и внутренних неразрешённых (несанкционированных) воздействий.

Особенности взаимодействия компонент заключаются в следующем.

1) Внешние воздействия чаще всего оказывают несанкционированное влияние на информацию путём воздействия на другие компоненты системы.

2) Следующей особенностью является возможность несанкционированных действий, вызываемых внутренними причинами, в отношении информации со стороны технических, программных средств, обслуживающего персонала и пользователей.

В этом заключается основное противоречие взаимодействия этих компонент с информацией.

Причём, обслуживающий персонал и пользователи могут сознательно осуществлять попытки несанкционированного воздействия на информацию.

Таким образом, обеспечение безопасности информации в АС должно предусматривать защиту всех компонент от внешних и внутренних воздействий (угроз).

Под угрозой безопасности информации понимается потенциально возможное событие, процесс или явление, которые могут привести к уничтожению, утрате целостности, конфиденциальности или доступности информации.

Все множество потенциальных угроз безопасности информации в АС может быть разделено на два класса (рис. 1).

Рис. 1. Угрозы безопасности информации в компьютерных системах

Случайные угрозы

Угрозы, которые не связаны с преднамеренными действиями злоумышленников и реализуются в случайные моменты времени, называют случайными или непреднамеренными.

Реализация угроз этого класса приводит к наибольшим потерям информации (по статистическим данным - до 80% от ущерба, наносимого информационным ресурсам АС любыми угрозами). При этом могут происходить уничтожение, нарушение целостности и доступности информации. Реже нарушается конфиденциальность информации, однако при этом создаются предпосылки для злоумышленного воздействия на информацию.

Стихийные бедствия и аварии чреваты наиболее разрушительными последствиями для АС, т.к. последние подвергаются физическому разрушению, информация утрачивается или доступ к ней становится невозможен.

Сбои и отказы сложных систем неизбежны. В результате сбоев и отказов нарушается работоспособность технических средств, уничтожаются и искажаются данные и программы, нарушается алгоритм работы устройств. Нарушения алгоритмов работы отдельных узлов и устройств могут также привести к нарушению конфиденциальности информации. Например, сбои и отказы средств выдачи информации могут привести к несанкционированному доступу к информации путем несанкционированной ее выдачи в канал связи, на печатающее устройство и т. п.

Ошибки при разработке АС, алгоритмические и программные ошибки приводят к последствиям, аналогичным последствиям сбоев и отказов технических средств. Кроме того, такие ошибки могут быть использованы злоумышленниками для воздействия на ресурсы АС. Особую опасность представляют ошибки в операционных системах (ОС) и в программных средствах защиты информации.

Согласно данным Национального Института Стандартов и Технологий США (NIST) 65 % случаев нарушения безопасности информации происходит в результате ошибок пользователей и обслуживающего персонала. Некомпетентное, небрежное или невнимательное выполнение функциональных обязанностей сотрудниками приводят к уничтожению, нарушению целостности и конфиденциальности информации, а также компрометации механизмов защиты.

Характеризуя угрозы информации в АС, не связанные с преднамеренными действиями, в целом, следует отметить, что механизм их реализации изучен достаточно хорошо, накоплен значительный опыт противодействия этим угрозам. Современная технология разработки технических и программных средств, эффективная система эксплуатации АС, включающая обязательное резервирование информации, позволяют значительно снизить потери от реализации угроз этого класса.

Преднамеренные угрозы

Второй класс угроз безопасности информации в АС составляют преднамеренно создаваемые угрозы.

Данный класс угроз изучен недостаточно, очень динамичен и постоянно пополняется новыми угрозами. Угрозы этого класса в соответствии с их физической сущностью и механизмами реализации могут быть распределены по пяти группам:

  1. традиционный или универсальный шпионаж и диверсии;

  2. несанкционированный доступ к информации;

  3. электромагнитные излучения и наводки;

  4. модификация структур АС;

  5. вредительские программы.