Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кровь сердце дыхание.docx Физиология.docx
Скачиваний:
42
Добавлен:
22.03.2015
Размер:
77.54 Кб
Скачать

3.3. Лимфатическая система

Лимфатическая система, состоящая из лимфатических сосудов и узлов, тесно связана с кровеносной системой. Она обеспечивает обмен тканевой жидкости, перенос продуктов расщепления питательных веществ, всосавшихся из тонкой кишки, выполняет защитную, иммунную, кроветворную, регуляторную и другие функции. По лимфатическим сосудам происходит перенос (метастазирование) опухолевых клеток и микроорганизмов. Лимфатическая система начинается лимфатическими капиллярами. Сливаясь, они образуют лимфатические сосуды, в просветах которых находятся клапаны, обеспечивающие ток лимфы только по направлению к сердцу и придающие лимфатическим сосудам четкообразный вид. По лимфатическим сосудам лимфа поступает в регионарные лимфатические узлы. В узлах находятся ретикулярные волокна и ретикулярные клетки, образующие сеть, в петлях которой задерживаются инородные частицы, попадающие в лимфу (бактерии, пылевые частицы, опухолевые клетки). Из паренхимы узла в лимфу поступают лимфоциты. Лимфа из лимфатического узла по выносящим сосудам течет к лимфатическим стволам и протокам. Имеется два основных лимфатических протока – грудной и правый. В начальной части грудного лимфатического протока образуется расширение – млечная цистерна (пассивное лимфатическое сердце), сращенная с диафрагмой, сокращение которой при дыхании способствует току лимфы. Грудной лимфатический проток впадает в левый венозный угол сердца, правый лимфатический проток – в правый венозный угол.

Функции лимфатической системы:

1) удаление избытка внеклеточной жидкости;

2) возврат в кровеносное русло белков и жиров, профильтро-

вавшихся в печени и желудочно-кишечном тракте (за сутки с лимфой возвращается более 100 г белков);

3) образование и перенос лимфоцитов и других факторов иммунной системы;

4) захват и обезвреживание инородных частиц, бактерий, опухолевых клеток;

5) транспорт некоторых биологически активных веществ.

3.4. Гемодинамика. Системное артериальное давление

Гемодинамика изучает закономерности движения крови по сосудам.

Функциональные группы сосудов:

1) амортизирующие или магистральные (аорта, легочная артерия, крупные артерии): растягиваются во время систолы;

2) резистивные (сосуды сопротивления, мелкие артерии и артериолы): обладают наибольшим сопротивлением кровотоку, т.к. в их стенке содержится толстый мышечный слой, при сокращении которого уменьшается кровоток в отдельные органы или их отдельные участки;

3) обменные (капилляры), в которых происходит обмен водой, газами и органическими веществами между кровью и тканями;

4) емкостные, или аккумулирующие (вены): благодаря высокой растяжимости, они могут вмещать большие объемы крови;

5) шунтирующие – анастомозы, соединяющие между собой артерии и вены;

6) сосуды возврата крови в сердце (средние, крупные и полые вены).

Закономерности движения крови по сосудам.

Важнейшим показателем движения крови по сосудам является объемная скорость кровотока (Q), т.е. объем крови, протекающий через поперечное сечение сосуда в единицу времени (л/мин).

Движущая сила кровотока определяется энергией, задаваемой сердцем потоку крови в сосудах, и градиеном давления, т.е. разницей давления между отделами сосудистого русла: кровь течет от области высокого давления (Р1) к области низкого давления (Р2).

Сопротивление сосудов (R) противодействует движению крови. Исходя из этого,

P1 – P2 Q = ----------, где R – сосудистое сопротивление;

R Q – объемная скорость кровотока.

Это основной закон гемодинамики: количество крови, протекающей через поперечное сечение сосуда в единицу времени, прямо пропорционально разности давления в начале и в конце сосуда и обратно пропорционально его сопротивлению.

Важно помнить, что объемная скорость кровотока в разных отделах сосудистого русла в данный момент времени одинакова, т.к. кровеносная система замкнутая, следовательно, через любое поперечное сечение ее в единицу времени проходит одно и то же количество крови: Q1 = Q2 = Qn = 4 – 6 л/мин.

Другим важным показателем гемодинамики является линейная скорость кровотока (V), т.е. скорость перемещения крови вдоль сосуда при ламинарном кровотоке. Она выражается в сантиметрах в секунду (см/с) и определяется как отношение объемной скорости кровотока (Q) к площади поперечного сечения сосуда (πr2):

r 2 V Q π = .

Линейная скорость кровотока прямо пропорциональна объему крови и обратно пропорциональна площади поперечного сечения сосудов. При подсчете площади поперечного сечения сосудов учитывается общая сумма площади просветов сосудов этого калибра (например, всех капилляров) в данном участке. Исходя из этого, наименьшим поперечным сечением обладает аорта (она является единственным сосудом, по которому кровь выходит из сердца), а наибольшим – капилляры (их число может достигать миллиарда, поэтому даже при диаметре одного капилляра в несколько мкм общая площадь их поперечного сечения в 800 – 1000 раз больше, чем у аорты). Соответственно, и линейная скорость оказывается различной в разных участках сосудистого русла: максимальных значений линейная скорость достигает в аорте и минимальных – в капиллярах.

Факторы, обеспечивающие непрерывность кровотока:

1. Эластичность аорты.

2. Градиент давления между артериальным и венозным руслом.

3. Сокращения скелетных мышц.

4. Отрицательное давление в грудной полости – присасывающее действие грудной клетки.

5. Наличие полулунных клапанов в венах, препятствующих обратному току крови по венам.

Ударный объем сердца, или систолический объем (СО), – количество крови, поступающее в аорту при каждом сокращении сердца. В норме равен 50 – 70 мл у мужчин и 40 – 50 мл у женщин.

Минутный объем кровотока (МОК) – это произведение ударного объема на частоту сердечных сокращений. В норме МОК составляет 4,5 – 5 л/мин у мужчин и 3,9 – 4,5 л/мин у женщин (в среднем 50 мл х 80 уд/мин = 4000 мл/мин).

Физиологические параметры кровотока. Основным параметром гемодинамики является артериальное давление (АД). Оно определяется силой сердечного выброса (СВ) и величиной общего периферического сопротивления сосудов (ОПСС): АД = СВ х ОПСС.

АД определяют также как результат умножения объемной скорости кровотока (Q) и сопротивления сосудов (R): АД = Q x R.

В биологических и медицинских исследованиях обычно артериальное давление измеряют в мм ртутного столба, венозное давление – в мм водного столба. Измерение давления осуществляется в артериях с помощью прямых (кровавых) или косвенных (бескровных) методов. В первом случае – игла или катетер вводится прямо в сосуд, во втором случае используется способ пережатия сосудов конечности (плеча или запястья) манжетой (звуковой метод Короткова)

Систолическое давление – это максимальное давление, достигаемое в артериальной системе во время систолы. В норме систолическое давление в большом круге кровообращения равно в среднем 120 мм рт. ст.

Диастолическое давление – минимальное давление, возникающее во время диастолы в большом круге кровообращения, в среднем составляет 80 мм рт. ст.

Пульсовое давление представляет собой разность между систолическим и диастолическим давлением.

Кровяное давление постепенно уменьшается по мере удаления крови от сердца. Из аорты (где систолическое давление составляет 120 мм рт. ст.) кровь течет через систему магистральных артерий (80 мм рт. ст.) и артериол (40 – 60 мм рт. ст.) в капилляры (15 – 25 мм. рт. ст.), откуда поступает в венулы (12 – 15 мм рт. ст.), венозные коллекторы (3 – 5 мм рт. ст.) и полые вены (1 – 3 мм рт. ст.).

3.5. Методы исследования деятельности сердца и сердечно-сосудистой системы.

Регуляция работы сердца

Работа сердца представляет собой непрерывное чередование периодов сокращения (систола) и расслабления (диастола). Систола и диастола составляют сердечный цикл. Если частота сердечных сокращений составляет 60 – 80 сокращений в мин, то каждый цикл равен 0,8 с. При этом 0,1 с – систола предсердий, 0,3 с – систола желудочков, 0,4 с – общая диастола сердца. Работу сердца исследуют с помощью выслушивания (аускультации) или записи электрических сигналов и звуков, возникающих при работе сердца. Каждый цикл сопровождается раздельными звуками, которые называются тоны сердца. Их можно услышать, приложив стетоскоп, фонендоскоп или микрофон к поверхности грудной клетки. I тон, более низкий и протяжный – систолический – в основном обусловлен сокращением желудочков и длится примерно 0,12 с.

II тон, более высокий и короткий – диастолический – связан с захлопыванием полулунных клапанов (между левым желудочком и аортой) ~ 0,08 с. При дефектах митрального клапана происходит частичный отток крови во время систолы обратно в левое предсердие, вследствие чего возникает характерный систолический шум. При недостаточности аортального клапана часть крови во время диастолы возвращается в сердце, что приводит к возникновению диастолического шума.

Кардиография – это запись работы сердца, выполненная каким-либо способом. В настоящее время применяется электрокардиография (ЭКГ) – запись электрических потенциалов, возникающих при работе сердца. Изменения ЭКГ наблюдаются при инфаркте миокарда, блокаде проводящих путей сердца, гипертрофии различных отделов сердца. ЭКГ позволяет определить не только характер нарушений, но и их локализацию.

Фонокардиография – метод графической регистрации тонов сердца с поверхности грудной клетки, т.е. графическая запись тонов сердца, позволяющая выявить еще III и IV тоны, которые не слышны при обычном выслушивании сердца. III тон отражает вибрацию стенок желудочков вследствие быстрого поступления крови в них, IV тон возникает во время систолы предсердий и продолжается до начала их расслабления.

Сфигмография – графическая регистрация артериального пульса крупных артерий, флебография – графическая регистрация венного пульса крупных вен.

Регуляция работы сердца. Показатели работы сердца рефлекторно изменяются в зависимости:

от напряжения О2 и СО2 в крови,

от объема протекающей крови,

от эмоционального состояния и физической нагрузки.

Так, при физической нагрузке ударный объем может увеличиться в 2 – 3 раза, частота сокращений – в 3 – 4 раза, минутный объем кровообращения – в 4 – 5 раз. Механизмы регуляции работы сердца включают в себя интракардиальные и экстракардиальные части.

Интракардиальные механизмы в свою очередь подразделяются на миогенные (внутриклеточные) и нервные (за счет внутрисердечной нервной системы). Внутриклеточные механизмы обусловлены свойствами кардиомиоцитов и лежат в основе закона Франка – Старлинга: чем больше растягивается миокард во время диастолы, тем сильнее он сокращается во время систолы, т.е. чем больше крови поступает в желудочки, тем сильнее они потом сокращаются.

Феномен Анрепа заключается в том, что чем больше сопротивление выбросу крови из желудочков (например, при сужении аорты), тем сильнее происходит сокращение желудочков.

Феномен Боудича (или феномен лестницы) проявляется в том, что чем выше частота сердечных сокращений, тем больше сила сокращений. Нервные внутрисердечные механизмы осуществляются рефлексами, дуги которых замыкается в пределах сердца.

Экстракардиальные механизмы подразделяются на нервные и гуморальные. Парасимпатические волокна в составе блуждающего нерва оказывают угнетающее влияние на частоту и силу сердечных сокращений, а также понижают возбудимость и проводимость сердечной мышцы. Сердце находится под постоянным тормозным влиянием со стороны блуждающего нерва. Симпатическая иннервация сердца осуществляется в основном β-адренорецепторами, активация которых вызывает увеличение силы и частоты сердечных сокращений. Их влияние, в отличие от влияния блуждающего нерва, проявляется периодически. Регуляция работы сердца может осуществляться благодаря собственным рефлексам сердечно-сосудистой системы, т.е. тем, которые возникают при раздражении рецепторов самой сердечнососудистой системы. Например, при снижении давления в аорте происходит рефлекторное увеличение частоты сердцебиений, при недостатке кислорода развивается рефлекторная тахикардия, а при дыхании чистым О2 – брадикардия. Эти реакции очень чувствительны: увеличение частоты сердцебиения наблюдается уже при снижении напряжения кислорода всего на 3 %, когда никаких признаков гипоксии в организме еще не обнаруживается. Они осуществляются посредством артериальных хеморецепторов, реагирующих на изменения содержания О2 в крови.

Есть еще и сопряженные кардиальные рефлексы, обусловленные раздражением рефлексогенных зон, не принимающих прямого участия в регуляции кровообращения. Например, рефлекс Гольца: урежение сердцебиений (вплоть до полной остановки сердца) в ответ на раздражение механорецепторов брюшины или органов брюшной полости (при проведении операций на брюшной полости, при нокауте у боксеров). Рефлекторная остановка сердца может быть при резком охлаждении кожи живота (например, при нырянии в холодную воду). Также брадикардия имеет место при надавливании на глазные яблоки.

Гуморальная регуляция. Прямое или опосредованное действие на сердце оказывают практически все биологически активные вещества, содержащиеся в плазме крови. Например, гормоны мозгового вещества надпочечников адреналин, норадреналин вызывают усиление и учащение сердцебиений. Кортикостероиды, вазопрессин, глюкагон, тироксин действуют слабее, чем адреналин, но также увеличивают силу сердечных сокращений. Сердце очень чувствительно к ионному составу протекающей крови. Недостаток в крови ионов калия, например, в результате действия мочегонных препаратов, может приводить к нарушениям сердечного ритма, недостаток кальция приводит к снижению силы сердечных сокращений. На этом механизме основано действие кардиоплегических растворов, которые используются в кардиохирургии для временной остановки сердца.