Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по физике 2 часть.docx
Скачиваний:
50
Добавлен:
26.03.2015
Размер:
255.27 Кб
Скачать

4.Работа , совершаемая при изменении объёма газа.

13. Адиабатический процесс.

1. Цикл Карно. Цикл Карно состоит из четырёх стадий:

1. Изотермическое расширение (на рисунке — процесс A>Б). В начале процесса рабочее тело имеет температуру TH, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается.

2. Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс Б>В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

3. Изотермическое сжатие (на рисунке — процесс В>Г). Рабочее тело, имеющее к тому времени температуру TX, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты QX.

4. Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс Г>А). Рабочее тело отсоединяется от холодильника . При этом его температура увеличивается до температуры нагревателя.

 

Цикл Карно

 

КПД цикла Карно:

Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры награвателя (Tн) и холодильника (Тх).

Из уравнения следуют выводы:

1. Для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;

2. КПД тепловой машины всегда меньше 1.

Цикл Карно обратим, так как все его составные части являются равновесными процессами.

2. Второе начало термодинамики. Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, чтокоэффициент полезного действияне может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.

Второе начало термодинамики является постулатом, не доказываемым в рамкахтермодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

3. Энтропия. От греческого entropia -- поворот, превращение. Понятие энтропии впервые было введено в термодинамике для определения меры необратимого рассеяния энергии. Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления какого -- либо макроскопического состояния; в теории информации -- мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Все эти трактовки энтропии имеют глубокую внутреннюю связь.

Энтропия -- это функция состояния, то есть любому состоянию можно сопоставить вполне определенное (с точность до константы -- эта неопределенность убирается по договоренности, что при абсолютном нуле энтропия тоже равна нулю) значение энтропии.

Для обратимых (равновесных) процессов выполняется следующее математическое равенство (следствие так называемого равенства Клаузиуса)

,

где -- подведенная теплота,-- температура,и-- состояния,и-- энтропия, соответствующая этим состояниям (здесь рассматривается процесс перехода из состоянияв состояние).

Для необратимых процессов выполняется неравенство, вытекающее из так называемого неравенства Клаузиуса

,

где -- подведенная теплота,-- температура,и-- состояния,и-- энтропия, соответствующая этим состояниям.

Поэтому энтропия адиабатически изолированной (нет подвода или отвода тепла) системы при необратимых процессах может только возрастать.

Используя понятие энтропии Клаузиус (1876) дал наиболее общую формулировку 2-го начала термодинамики: при реальных (необратимых) адиабатических процессах энтропия возрастает, достигая максимального значения в состоянии равновесия (2-ое начало термодинамики не является абсолютным, оно нарушается при флуктуациях).

4. Закон возрастания энтропии. Энтропия системы есть функция ее состояния, определенная с точностью до произвольной постоянной.

Разность энтропий в двух равновесных состояниях и, по определению,равна приведенному количеству теплоты, которое надо сообщить системе, чтобы перевести ее из состояния в состояниепо любому квазистатическому пути.

Энтропия выражается функцией:

 .

Предположим, что система переходит из равновесного состояния в равновесное состояниепо пути, и переход – необратимый (штрихованная). Систему в квазистатически можно вернуть в исходное состояние по другому пути. Опираясь на неравенство Клаузиуса можно написать:

 . Принимая во внимание определение энтропии и квазистатичность процесса получим:

 .

Подставим в неравенство Клаузиуса:

 . Если система адиаботичеси изолирована, то. Тогда получимзакон возрастания энтропии.

Суть закона состоит в том,

что энтропия адиаботически изолированной системы не может убывать – она либо возрастает, либо остается постоянной