Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
М и ТКМ.doc
Скачиваний:
1914
Добавлен:
30.03.2015
Размер:
25.7 Mб
Скачать

6. Титановые, медные и алюминиевые сплавы

6.1. Титан и его сплавы

Важнейшее преимущество титана и титановых сплавов перед другими конструкционными материалами – это высокая удельная прочность и жаропрочность в сочетании с хорошей коррозионной стойкостью, практическое отсутствие хладноломкости наряду с высокой удельной прочностью. Кроме того, титан и его сплавы, несмотря на плохую обрабатываемость резанием, хорошо свариваются, обрабатываются давлением в холодном и горячем состоянии, термически упрочняются, что имеет важное значение для их применения в ряде отраслей техники. Это относится в первую очередь к авиа-, ракето- и судостроению, химическому, пищевому и транспортному машиностроению.

Титан – металл серебристо-белого цвета с плотностью ρ = 4,505 г/см3 и температурой плавления 1672 °С. Титан может находиться в двух полиморфных модификациях: Tiα до 882 ºС с гексагональной плотноупакованной решеткой и высокотемпературной Tiβ выше этой температуры с объёмно центрированной кубической решеткой до температуры плавления. Имеет высокие механические свойства: σВ = 300 МПа, δ = 40 %, не имеет температурного порога хладноломкости, парамагнитен. Титан легкий, прочный, тугоплавкий, коррозионно-стойкий за счет возникновения оксидной пленки TiO2.

Механические свойства титана определяются составом: чем в нем меньше примесей, тем ниже прочность и выше пластичность (рис. 6.1). Характерная особенность титана – необычайно высокая чувствительность к примесям атмосферных газов – кислороду, азоту, водороду и углероду, которые образуют с титаном твердые растворы внедрения и промежуточные фазы: оксиды, нитриды, гидриды, карбиды, повышая его характеристики прочности и снижая пластичность.

Рис. 6.1. Влияние примеси кислорода на механические свойства титана

Кроме того, ухудшается обработка давлением, свариваемость и коррозионная стойкость. Поэтому содержание этих примесей ограничивается сотыми и тысячными долями процента.

Полиморфизм титана, хорошая сплавляемость с другими металлами дают широкие возможности получения сплавов на основе титана с самыми разными механическими свойствами благодаря легированию, термической обработке, деформационному упрочнению.

Элементы, легирующие титан, подразделяются на следующие:

  • повышающие температуру полиморфного превращения и расширяющие область существования α-модификации: Al, Ga, La, C, O, N;

  • понижающие температуру полиморфного превращения и расширяющие область существования β-модификации: Mo, V, Nb, Ta, Hf, W, Cr, Mn, Fe, Co и другие.

Алюминий является основным легирующим элементом для титана и содержится почти во всех промышленных сплавах. Образуя с титаном твердый раствор, он повышает удельную прочность сплава, жаропрочность, модуль упругости, уменьшает склонность к водородной хрупкости. Из-за уменьшения технологической пластичности содержание Al ограничивается 7 %.

Для повышения рабочих характеристик жаропрочных сплавов с высоким содержанием алюминия главным образом используют добавки ванадия, молибдена и вольфрама.

Цирконий повышает термическую стабильность, увеличивает предел ползучести, прочность при низких и средних температурах, уменьшает склонность к хладноломкости и улучшает свариваемость.

Хром считается одной из наиболее перспективных легирующих добавок к титану наряду с молибденом. Сплавы титана с хромом отличаются превосходным сочетанием прочности и пластичности (рис. 6.2).

Ниобий – повышает стабильность поверхности, увеличивает жаростойкость при высоких температурах.

В связи с определенным характером действия на титан различных легирующих элементов промышленные сплавы по типу структуры могут быть подразделены на три группы: титановые сплавы на основе Tiα, сплавы на основе Tiβ и двухфазные (α+β)-титановые сплавы.

Промышленные титановые сплавы с (α+β)-структурой целесообразно подразделить на три группы: псевдо-α-сплавы с небольшим количеством β-фазы (Tiβ) со свойствами, близкими к α-сплавам (Tiα), типичные (α+β)-сплавы и псевдо-β-сплавы. Псевдо-β-сплавы представляют собой сплавы на основе Tiβ. В отожженном состоянии их физико-механические и технологические свойства типичны для β-сплавов, однако β-фаза у этих сплавов термически нестабильна.

Рис. 6.2. Твердость сплавов титана с различным содержанием хрома после отжига при температуре 600 ºС (1) и охлаждения из β-области с различными скоростями: резкая закалка в растворе щелочи (2), закалка в воде (3), охлаждение на воздухе (4)

По уровню характеристик прочности титановые сплавы классифицируют на высокопластичные и малопрочные, среднепрочные и высокопрочные, жаропрочные, коррозионно-стойкие; по способности упрочняться с помощью термической обработки – на упрочняемые и неупрочняемые; по технологии производства – на деформируемые и литейные.

Деформируемые титановые сплавы с α-структурой, содержащие в основном алюминий, характеризуются невысокой прочностью и не упрочняются при термической обработке. Они хорошо свариваются, имеют высокие механические свойства при криогенных температурах, устойчивы против коррозии в атмосферной среде, загрязненной газами до температуры 1090 °С; сохраняют высокую прочность при нагреве до 650 °С (ВТ5–1, ОТ4–0, ОТ4, ВТ20, ВТ18, ВТ–6, ВТ14, ВТ3–1, ВТ25 и др.). Однако их пластичность хуже, чем у двухфазных сплавов.

Двухфазные титановые (α+β)-сплавы характеризуются хорошим сочетанием механических и технологических свойств. Эти сплавы обладают почти удвоенной прочностью по сравнению с чистым титаном, однако эта прочность сохраняется до температуры 430 °С. Большинство этих сплавов лучше поддаются деформированию, чем однофазные сплавы. Но их сварка затруднена, т.к. они при сварке теряют пластичность, а швы приобретают хрупкость. По структуре после закалки в них образуется структура мартенситного типа.

Увеличение количества β-фазы в сплавах до 50 % обеспечивает двухфазным титановым сплавам самую высокую прочность как в отожженном, так и в закалённом состояниях.

Однофазные β-сплавы имеют наиболее высокую коррозионную стойкость. Сплавы с β-структурой реже применяются в промышленности из-за чувствительности к загрязнению газами при нагреве.

Литейные титановые сплавы (ВТЛ1, ВТ14Л, ВТ5Л и др.) имеют небольшой температурный интервал кристаллизации, высокую жидкотекучесть и хорошую плотность отливки. Титановые сплавы этой категории склонны к поглощению газов, поэтому разливку надо проводить в вакууме или в среде нейтральных газов. Для получения отливок используют чугунные или стальные формы, а также оболочковые и керамические формы.

Для фасонного литья применяют сплавы, близкие по химическому составу некоторым деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы.

Деление конструкционных титановых сплавов по типу структуры и характеристик прочности, их химический состав приведены в таблице 6.1.

Титановые сплавы подвергаются следующим видам термической обработки: отжигу для снятия напряжений, рекристаллизационному отжигу, упрочняющей термической и химико-термической обработке.

Упрочняющая термическая обработка (α+β)-сплавов состоит из закалки с температур нагрева до β- или (α+β)-области с последующим искусственным старением. После закалки образуется α’-фаза (мартенситная фаза) игольчатого строения, представляющая собой пересыщенный твердый раствор легирующих элементов в α-фазе. При старении из α’-фазы выделяется β-фаза, понижающая твердость сплава, или интерметаллидная фаза, вызывающая охрупчивание.

Таблица 6.1

Классификация промышленных титановых сплавов и их механические свойства

Тип сплава

Марка сплава

Средний

химический

состав, %

Уровень прочности

Механич.

свойства

Технология получения

σВ,

МПа

δ, %

α-сплавы

ВТ1–0

99,28% Ti

М.п.*

350–500

30

деформируемый

ВТ5

5% А1

С.п.

750–900

10

ВТ5–1

5% А1; 2,5% Sn

С.п.

750–900

12

ВТ5Л

5% А1

М.п.

700–900

9

литейный

псевдо-α-сплавы

ОТ4–1

1,5% А1; 1% Мn

М.п..

600–750

20

деформируемый

АТ–2

2% Zr; 1% Мо

М.п.

600–750

20

ВТ20

6% А1; 1% Мо; 1%V

С.п.

950–1150

8

ТС5

5% А1; 2% Zr; 3% Sn; 2% V

В.п.

950–110

8

ВТ20Л

6% А1; 2% Zr;

1% Мо

С.п.

≥1000

≤4

литейный

(α+β)-сплавы

ВТ6С

5% А1; 4% V

С.п.

850–1000

12

деформируемый

ВТЗ–1

6% А1; 2,5% Мо; 2% Сr; 0,3% Si; 0,5% Fe

В.п.

1000–1200

10

ВТ14

4,5% А1; 3% Мо; 1% V

В.п.

900–1070

8

ВТ22

5% А1; 5 % Мо; 5% V; 1% (Fе, Сr)

В.п.

1100–1250

8

ВТ14Л

5% А1; 3% Мо; 1% V; 0,5% (Cr, Fe)

В.п.

900

5

литейный

псевдо-β-сплавы

ВТ–15

3% А1; 7% Мо;

11% Сr

В.п.

1350–1500

4

деформируемый

ТС6

3% А1; 5% Мо; 6% V, 11% Сr

В.п.

1400–1500

4

β-сплавы

4201

33 % Мо

С.п.

800–850

10

деформируемый, коррозионно­стойкий

*Примечание. М.п. – малопрочные (высокопластичные), С.п. – среднепрочные, В.п. – высокопрочные.

При закалке из β-области структура сплавов состоит из переохлажденного β’-твердого раствора. При старении из такого раствора выделяется мелкодисперсная α-фаза, повышающая прочность и твердость сплава.

Для повышения жаростойкости детали из титановых сплавов подвергают различным видам диффузионной металлизации, а для повышения износостойкости – азотированию.