Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на Экзамен.docx
Скачиваний:
71
Добавлен:
30.03.2015
Размер:
3.08 Mб
Скачать
  1. Обратная решетка Бравэ.

При анализе многих явлений (дифракция, движение электронов в потенциальном поле, рассеяние фотонов)в физике твердого тела играет важную роль так называемая обратная решетка. Основные векторы обратной решетки bi определяются соотношениями (ai, bk) = 2πδik  (ik = 1, 2, 3), где ai – основные векторы прямой решетки. Таким образом, обратная решетка – это множество точек с радиус-векторами Gn = n1b1+n2b2+n3b3, где ni – целые числа. В отличие от реальной кристаллической решетки, никаких частиц в узлах обратной решетки реально не существует, она является удобной абстракцией, позволяющей математически просто описывать определенные свойства кристалла.

  1. Индексы Миллера.

Рис. 7. Примеры индексов Миллера для ряда плоскостей с кубической решеткой

  1. Электроны и дырки – как носители зарядов в полупроводниках.

В полупроводниках носителями заряда являются электроны и дырки. Отношение их концентраций определяет тип проводимости полупроводника. Те носители, концентрация которых выше, называют основными носителями заряда, а носители другого типа — неосновными.

Если концентрация электронов значительно превосходит концентрацию дырок, то такой полупроводник называют полупроводником n-типа проводимости. В этом случае основными носителями заряда являются электроны, а неосновными носителями — дырки.

Соответственно, если концентрация дырок выше, чем электронов, то полупроводник называют полупроводником p-типа. В нем основными носителями являются дырки, а неосновными носителями — электроны.

Концентрация равновесных носителей заряда в полупроводнике определяется только температурой образца и концентрацией легирующих примесей. Под действием внешних воздействий (инжекция, облучение образца светом, ионизирующими частицами или ионизирующим излучением) в полупроводнике возникают неравновесные носители заряда, и полная концентрация носителей заряда увеличивается.

  1. Элементы симметрии и их обозначения. Точечные и трансляционные операции симметрии.

  1. Пространственные решеток Бравэ как результат совмещения трансляционной и точечной симметрии. Классификация решеток Бравэ.

Пространственная решетка (решетка Бравэ)

Возьмем точку и совершим все возможные трансляции на вектора 1 2 a , a и a3 . Пространство заполнится точками. Их совокупность называют пространственной решеткой или решеткой Бравэ, а точки - узлами пространственной решетки. У всех одномерных кристаллов одна пространственная решетка. Трехмерные кристаллы могут иметь 14 пространственных решеток.

  1. Обозначение узлов, направлений и плоскостей в кристаллах. Простые плотноупакованные структуры, коэффициент упаковки. Полиморфизм кристаллов.

При обо­­­зна­чении узлов и  направ­ле­­ний в кристал­ли­чес­кой ре­ше­­т­ке ко­ор­ди­­на­ты лю­­бого уз­ла ре­­шетки можно вы­ра­зить как x=m×a, y=n×b, z=p×c, где a, b, c - параметры ре­шетки, m, n, p - це­лые или дро­бные числа. Если за еди­ницы измерения длин при­нять параметры ре­ше­тки, то ко­ор­­ди­на­та­ми  узла бу­дут просто це­лые или дро­бные числа m, n, p. Эти числа на­зы­вают индексами уз­ла и за­пи­сывают сле­ду­ю­щим об­разом:  [[mnp]] (рис. 1.8, а).

Для описания направления в кристалле выбирается прямая, про­­­­­ходящая через начало координат. Ее направление од­но­з­на­ч­но оп­ределяется индексами  [[mnp]]  первого узла, че­рез который о­на про­ходит (рис. 1.8, а). Поэтомуиндексы уз­ла одновременно яв­ля­­­ю­т­­ся и ин­дек­сами направления. Индексы направления обоз­на­ча­ются так: [mnp]. Строго го­воря, указанные индексы оп­ре­де­ля­ют целое се­мейство физичес­ки эквивалентных направлений в кри­с­талле, по­лу­­ча­е­мых циклической перестановкой значений ин­дек­сов m, n, p. Ин­­дексы эквивалентных направлений обо­з­на­ча­ю­т­ся <mnp>. Отметим, что если в символах узлов могут применяться дро­­­б­­­ные индексы, то для символов направлений и плоскостей ис­по­ль­зуются то­лько це­ло­численные индексы.

Для обозначения индексов плоскостей используются индексы Миллера, которые находятся следующим образом: выра­жа­ют отрезки H, K, L, которые плоскость отсекает на осях решетки (рис. 1.8, б), в осевых единицах H=m K=n,L=p, где m, n, p - це­­лые числа (координаты узлов), не равные нулю. Записывают ве­­ли­­­­чи­ны, обратные этим отрезкам, 1/m, 1/n, 1/p. Находят на­и­ме­нь­шее це­лое общее кратное (НОК) чисел m, n, p. Пусть НОК=d. В этом случае ин­де­ксами Миллера  плоскости будут являться це­лые чи­­сла h=d/m, k=d/n, l=d/p,  которые записываются так: (hkl).

Атомы и ионы большинства химических элементов обладают сферической симметрией. Если атомы представить в виде малых твердых несжимаемых шаров, между которыми действуют силы взаимного притяжения и отталкивания, то особенности строения большинства кристаллов можно условно рассматривать как пространственную упаковку таких шаров. Шары укладываются так, чтобы упаковка обладала наибольшей симметрией и компактностью. Это условие выполняется, если каждый шар соприкасается с шестью шарами. При этом в плоском слое каждый шар окружен шестью треугольными лунками (пустотами), а каждая из лунок − тремя шарами (рис. 1.15) [54, 74]. Обозначим шары буквами А, а пустоты − буквами В и С.

 

Рис. 1.15. Плотная упаковка шаров:

а − плоский слой шаров одинакового радиуса; б − тот же слой, представленный в виде сетки, узлами которой являются центры треугольных пустот, образуемых шарами А

 

Каждая из пустот типа В и С окружена тремя шарами, следовательно, каждому из этих трех шаров она принадлежит на одну треть. Значит, на каждый шар приходится  пустоты. Если укладывать следующий слой шаров, то их можно располагать так, чтобы каждый шар следующего слоя лег бы в лунку, образованную тремя соседними шарами. Поскольку треугольных пустот в два раза больше, чем шаров, то следующий слой можно расположить двумя способами: либо в углублениях В, либо С. Такая ситуация возникает при укладке каждого следующего слоя, следовательно, существует бесконечное число возможностей упаковывать шары, причем каждой из них должна соответствовать одна и та же плотность заполнения пространства шарами, равная 74,05 %.

Однако среди большого числа реальных кристаллических структур число таких упаковок ограничено. Чаще всего встречаются плотнейшая гексагональная (рис. 1.16) и плотнейшая кубическая(рис. 1.17) упаковки. В гексагональной плотноупакованной (ГПУ) структуре слой В повернут на 60о относительно слоя А. Последовательность укладки в этой структуре АВАВАВ… илиАСАСАС... В кубической упаковке слои располагаются перпендикулярно направлению [111] в гранецентрированной кубической (ГЦК) решетке и чередование слоев имеет вид АВСАВСАВС...

 

Рис. 1.16. Гексагональная плотнейшая упаковка1

 

Рис. 1.17. Кубическая плотная упаковка:

а − упаковка шаров в ГЦК структуре; б − кубическая гранецентрированная элементарная ячейка

 

Для использования принципа плотной упаковки в качестве модели структуры кристаллов необходимо учитывать число и вид пустот, окружающих каждый атом. В плоском слое на шар приходится две треугольные пустоты, в пространстве каждый шар окружают пустоты двух сортов: тетраэдрические и октаэдрические.

Если треугольную пустоту плоского слоя прикрыть сверху третьим шаром, то пустота в обоих слоях оказывается окружена четырьмя шарами, центры которых образуют правильный тетраэдр. Такая пустота называется тетраэдрической (рис. 1.18, а). Если же треугольная пустота второго слоя шаров находится над пустотой первого слоя, тогда возникающая при этом пустота окружена шестью шарами, располагающимися по вершинам октаэдра. Соответственно пустоту называют октаэдрической (рис. 1.18, б).

Число тетраэдрических пустот в плотнейшей упаковке в два раза больше числа октаэдрических. Докажем это утверждение. Каждая октаэдрическая пустота окружена в пространстве шестью атомами, а каждый атом окружен шестью октаэдрическими пустотами. Таким образом, каждая такая пустота принадлежит данному атому на  и, следовательно, на каждый атом приходится  октаэдрическая пустота. С другой стороны, каждый атом одновременно окружен восемью тетраэдрическими пустотами, а каждая из них окружена четырьмя атомами. Следовательно, на каждый атом приходится  тетраэдрические пустоты.

 

Рис. 1.18. Пустоты в плотной упаковке шаров:

а – тетраэдрическая; б – октаэдрическая пустоты (шары нижнего слоя заштрихованы) [74]

 

Доля пространства, занимаемого атомами элементарной ячейки от объема ячейки называется коэффициентом упаковки  [%], где  - объем, занимаемый атомом,  - количество атомов, приходящихся на элементарную ячейку,  - объем элементарной ячейки.

Важной характеристикой кристаллической структуры является координационное число n, которое равно числу ближайших соседей, окружающих данный атом. Например, в кубической и гексагональной плотных упаковках , а коэффициент упаковки  %. В кубической объемноцентрированной структуре  %.

Полиморфизм. Способность одного и того же металла образовывать несколько разных кристаллических структур называется полиморфизмом. Различные структурные модификации одного и того же металла называют еще аллотропическими модификациями, а такие превращения под воздействиями температуры или давления называют аллотропическими превращениями.

    Полиморфизм распространен среди многих металлов и имеет важное значение для техники, так как оказывает влияние на поведение металлов и сплавов при их нагреве и охлаждении во время термической обработки и при эксплуатации деталей в машинах.     Полиморфные модификации, происходящие при самых низких температурах, обозначают символом α, при более высоких - символом β при еще более высоких - символом γ и т. д.

    Полиморфизмом обладают железо, кобальт, титан олово, марганец, ванадий, стронций, кальций, цирконий и др.

    Физическая суть полиморфного превращения заключается в том, что кристаллическое вещество при разных температурах переходит в состояние с меньшим запасом свободной энергии. Например, полиморфное равновесие титана наблюдается при 880 °С, а олова - при 13,2 °С.

    Переход металла из одной аллотропической модификации в другую сопровождается выделением теплоты при охлаждении металла и поглощением теплоты при его нагреве, а внешняя температура остается постоянной.

    Полиморфные превращения сопряжены с изменением компактности кристаллической решетки и изменением объема вещества. Переход железа из α- в γ-модификацию при температуре примерно 910 °С сопровождается изменением объема на 1,6 %. Плотность γ-железа на 1,05 % больше плотности α-железа, а удельный объем γ-железа соответственно меньше.