Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
171
Добавлен:
30.03.2015
Размер:
9.07 Mб
Скачать

Часть 1

1.Запрограммировать канал 0 таймера в режим, соответствующий уменьшенному на 1 номеру подгруппы.

2.Загрузить в счётчик канала 0 нулевой код. Запустить канал в режиме 1.

Часть 2

ЛИСТИНГ ПРОГРАММЫ

;Программимрование 0-ого

;таймера в 0-оц режим.

;два байта.

mvi a,30

out c3

mvi a,f0

out c0

mvi a,0f

out c0

;----------------------------------------------------

;Программимрование 1-ого

;таймера в 1-ый режим.

;два байта.

mvi a,72

out c3

mvi a,11

out c1

mvi a,00

out c1

;----------------------------------------------------

;Программимрование 2-ого

;таймера в 2-ой режим.

;два байта.

mvi a,b4

out c3

mvi a,f2

out c2

mvi a,0f

out c2

40. ИСТОЧНИКИ БЕСПЕРЕБОЙНОГО ПИТАНИЯ

Первое и самое главное назначение источника бесперебойного питания - обеспечить электропитание компьютерной системы или другого оборудования в то время, когда электрическая сеть по каким-то причинам не может это делать. Во время такого сбоя электрической сети ИБП питается сам и питает нагрузку за счет энергии, накопленной его аккумуляторной батареей.

Каждый человек, сталкивающийся с компьютерами, рано или поздно узнает о великолепной идее бесперебойного питания компьютеров. Если этот человек имеет инженерное образование и творческую жилку, он немедленно начинает изобретать "велосипед", придумывая, как бы можно было сделать такую штуку. Как правило, люди в этой ситуации придумывают одну и ту же схему, которая им кажется наиболее естественной и простой. Эта схема традиционно называется схемой с двойным преобразованием энергии.

ИБП с двойным преобразованием энергии (англ. - Double conversion UPS).

Основная идея этой схемы действительно очень проста. Компьютер питается от сети переменного тока. Значит на выходе ИБП должен выдавать переменный ток. И на входе ИБП тоже должен потреблять переменный ток, поскольку он питается от той же электрической сети. Но внутри ИБП (где-то в середке) должно быть постоянное напряжение, потому что оно необходимо для питания аккумуляторной батареи.

Вся мощность, потребляемая ИБП от сети, сначала преобразуется из переменного тока в постоянный с помощью выпрямителя. После этого в действие вступает преобразователь постоянного тока в переменный - инвертор, обеспечивающий на выходе ИБП необходимое переменное напряжение.

Аккумуляторная батарея, как ей и положено, находится в цепи постоянного тока, между выпрямителем и инвертором. Если в сети нормальное напряжение, выходного тока выпрямителя хватает для работы инвертора и для подзаряда батареи.

Когда напряжение в сети становится таким маленьким, что выпрямитель уже не может обеспечить полноценную работу инвертора, аккумуляторная батарея заменяет выпрямитель и питает инвертор требующимся ему постоянным током. Инвертор, в свою очередь, продолжает, как ни в чем ни бывало, подавать напряжение к компьютеру.

Но замена выпрямителя батареей не совсем полноценна: батарея может питать инвертор только ограниченное время, которое зависит от накопленного ею заряда и мощности компьютерной системы. Как правило, это время исчисляется минутами или десятками минут.

Современные ИБП с двойным преобразованием энергии построены намного сложнее придуманной нами схемы. Подробнее о них мы поговорим в главе, посвященной этим устройствам.

Возможно вы уже заметили одно характерное свойство этой схемы ИБП, которое, в зависимости от точки зрения, можно считать недостатком или преимуществом. Речь идет о том, что наиболее важные части ИБП - выпрямитель и инвертор интенсивно работают даже тогда, когда в сети есть вполне нормальное напряжение, от которого мог бы питаться ваш компьютер. Это видимо приводит к уменьшению ресурса этих частей ИБП, усложнению схемы и бесполезному расходу энергии (ведь стопроцентного КПД не бывает).

ИБП с переключением (англ. - standby UPS или off-line UPS)

Попытаемся использовать приятные моменты, когда напряжение в электрической сети "нормальное" (не разбираясь сейчас, что это значит). В это время компьютер можно напрямую питать от электрической сети, не теряя энергию на два не нужных сейчас преобразования. А инвертор мы запустим в момент сбоя электрической сети (когда напряжение перестанет быть "нормальным"), и он будет работать от батареи.

Когда в сети нормальное напряжение, компьютер (или другая нагрузка ИБП) работает непосредственно от сети. В это время маломощный выпрямитель подзаряжает батарею ИБП. Если напряжение становится "ненормальным" или совсем исчезает, показанный на схеме переключатель срабатывает, включается инвертор, и ИБП начинает питать нагрузку от своей батареи.

ИБП с переключением имеет высокий КПД, поскольку при нормальной работе потребляет только энергию, необходимую для питания своей схемы и, если батарея разряжена, то для ее подзаряда.

Может быть самым серьезным из недостатков является то, что при переключении ИБП с режима работы от батареи на режим работы от сети, на выходе ИБП могут возникать скачки напряжения. При неблагоприятной фазе напряжения в момент переключения блок питания компьютера не сможет их погасить. В этом случае на чувствительных электронных компонентах компьютера возникают импульсные напряжения. Сами по себе они не опасны, но в сочетании с другими помехами в принципе могут быть причиной сбоя при работе компьютера.

У скачкообразного изменения напряжения несколько причин.

Во время работы от батареи, напряжение на выходе ИБП с переключением несинусоидальное (оно имеет вид чередующихся прямоугольным импульсов с паузами).

Во время переключения (которое занимает от 2 до 20 миллисекунд для разных моделей ИБП) на выходе ИБП отсутствует напряжение. Следовательно, имеется небольшой разрыв в напряжении, питающем компьютер.Почти единственная функция ИБП с переключением - поддержание работы компьютера, когда в сети нет напряжения. Но он не может эффективно взаимодействовать с электрической сетью и следить за отсутствием искажений сетевого напряжения, а также регулировать напряжение, когда оно становится слишком маленьким или чересчур большим.

ИБП, взаимодействующий с сетью (англ. - Line Interactive UPS).

ИБП, взаимодействующий c сетью (англ. - Line Interactive UPS)

Переключатель переехал ближе к входу, инвертор этого ИБП постоянно подключен к нагрузке. Кроме того, появился автотрансформатор. Честно говоря, он, как правило есть и в ИБП с переключением, но для ИБП, взаимодействующего с сетью, его наличие принципиально.

У этого автотрансформатора есть дополнительные отводы, к которым может быть подключена нагрузка при работе ИБП от сети. В результате напряжение на выходе ИБП иногда становится не таким, как на входе. С помощью автотрансформатора с отводами ИБП регулирует напряжение (увеличивает выходное напряжение, когда напряжение на входе мало и уменьшает напряжение на выходе, если входное напряжение слишком повысилось).

Взаимодействующий с сетью ИБП постоянно следит за напряжением: его величиной и формой. Для этого управление ИБП, взаимодействующего с сетью, поручено микропроцессору. Обычно микропроцессор нагружают множеством дополнительных функций, не связанных непосредственно со слежением за сетью и управлением, и некоторые из этих ИБП становятся довольно "умными": Они могут регистрировать напряжение в электрической сети, следят за временем и частотой, запоминают свои аварийные сообщения, включаются по расписанию и т.д.

Работает ИБП, взаимодействующий с сетью, примерно так же, как и ИБП с переключением. Когда в сети "нормальное" напряжение, он питает нагрузку от сети. Если напряжение отсутствует или искажено, то инвертор мгновенно начинает питать нагрузку, разряжая батарею, а входной переключатель ИБП размыкается.

Если напряжение в сети есть, но заметно меньше (или больше) нормы, то взаимодействующий с сетью ИБП переключает отводы автотрансформатора и регулирует напряжение, не переключаясь на батарею.

Как и ИБП с переключением, ИБП, взаимодействующий с сетью, имеет высокий КПД и некоторые другие преимущества.

Принципиальным, но не самым важным, недостатком этой схемы (как и ИБП с переключением) является разрыв электропитания в момент переключения на работу от батареи и обратно. Этот разрыв является следствием использования механических переключателей. Время их срабатывания довольно мало (несколько миллисекунд), но отлично от нуля.

Как было бы здорово, если бы внутри ИБП во время, пока срабатывает переключатель, напряжение на нагрузке поддерживалось бы какой-нибудь очень умной штукой. Эта штука была изобретена американцем Джозефом Солой в 1938 году, и называется феррорезонансным трансформатором.

Феррорезонансный ИБП (англ. - Ferroresonant UPS)

Феррорезонансный ИБП в какой-то степени является разновидностью ИБП, взаимодействующих с сетью. Тем не менее его обычно выделяют в отдельную группу ИБП. Дело в том, что в схему этого ИБП введен элемент, принципиально меняющий его работу, и давший название этому прибору.

Это феррорезонансный трансформатор. Он включен в схему феррорезонансного ИБП вместо автотрансформатора с отводами в схеме ИБП, взаимодействующего с сетью.

Коротко говоря, его функции заключаются в следующем. Он стабилизирует напряжение на выходе ИБП. Это позволяет работать в широком диапазоне сетевых напряжений без переключения на батарею. Нет никаких переключений и внутри самого ИБП (феррорезонансный трансформатор регулирует напряжение, не нуждаясь в переключении отводов).

Феррорезонансный трансформатор имеет значительную индуктивность. Во время работы ИБП от сети в магнитном поле трансформатора накапливается большая энергия, которая питает нагрузку во время переключения на работу от батареи. Поэтому выходное напряжение феррорезонансного ИБП не имеет разрыва в момент исчезновения напряжения в электрической сети. Это свойство дает возможность изготовителям феррорезонансных ИБП вполне обоснованно рекламировать их, как on-line ИБП.

Кроме отсутствия разрыва напряжения и плавного регулирования напряжения, феррорезонансный ИБП имеет и другие свойства, характерные для ИБП с двойным преобразованием энергии.

Источники бесперебойного питания-устр-ва, предн. для питания оборуд-я при отключении сете-вого напр-я или при его колебании за границы до-пустимого.

Переключаемые ИБП:

сеть -----ПИП----Ф-----П--выход

вход

-В-ль-АК-И-

Потребитель пит-ся от сети ч/з подавитель имп.поме-хи(ПИП) и фильтр(Ф), ч/з маломощный выпрямитель осущ-ся подзарядка АК, инвертор(И) исп-ся для преобр-я пост.напряжения в переменное. При колебаниях напряжения перекл-лем(П) вых.цепь подкл-ся к И и потребитель расходует заряд АК. Эта схема исп-ся в простых БП и не подходит для сети с нестабильным питанием. В ИБП с двойным преобразованием исп-ся мощный выпрямитель, что обесп. max-защиту от перепадов напр-я, т.к. никаких перекл-ий внутри ист-ка не происх-т.

Линейные ИБП:

сеть---АТР--П--И--выход

вход-СУ АК

АТР-автотрансформатор; СУ-схема упр-я, следит за вх.напряжением.

Перворезонансные ИБП:

сеть -----------П-------ПТ--выход

вход -В-ль-АК-И-

ПТ-перворезонансный трансформатор, способный накапливать и отдавать в нагрузку знач.энергию. Выполняет ф-цию стабилизатора напр-я, что позволяет снизить время ∆ на переключение.

ИБП с ∆-преобразованием:

сеть -----ПИП----Ф-----П--выход

вход --------------

--И--АК--И--

Вх.И обеспечивает 20% вых.мощности ист-ка, исп-ся для компенсации колебаний пит-я сети и для заряда АК.

39. ЯЧЕЙКИ ФЛЕШ-ПАМЯТИ

Ячейки флэш-памяти бывают как на одном, так и на двух транзисторах.

В простейшем случае каждая ячейка хранит один бит информации и состоит из одного полевого транзистора со специальной электрически изолированной областью ("плавающим" затвором - floating gate), способной хранить заряд многие годы. Наличие или отсутствие заряда кодирует один бит информации.

При записи заряд помещается на плавающий затвор одним из двух способов (зависит от типа ячейки): методом инжекции "горячих" электронов или методом туннелирования электронов. Стирание содержимого ячейки (снятие заряда с "плавающего" затвора) производится методом тунеллирования.

Как правило, наличие заряда на транзисторе понимается как логический "0", а его отсутствие - как логическая "1".

Современная флэш-память обычно изготавливается по 0,13- и 0,18-микронному техпроцессу.

Общий принцип работы ячейки флэш-памяти.

Рассмотрим простейшую ячейку флэш-памяти на одном n-p-n транзисторе. Ячейки подобного типа чаще всего применялись во flash-памяти с NOR архитектурой, а также в микросхемах EPROM.

Поведение транзистора зависит от количества электронов на "плавающем" затворе. "Плавающий" затвор играет ту же роль, что и конденсатор в DRAM, т. е. хранит запрограммированное значение.

Помещение заряда на "плавающий" затвор в такой ячейке производится методом инжекции "горячих" электронов (CHE - channel hot electrons), а снятие заряда осуществляется методом квантомеханического туннелирования Фаулера-Нордхейма (Fowler-Nordheim [FN]). При чтении, в отсутствие заряда на "плавающем" затворе, под воздействием положительного поля на управляющем затворе, образуется n-канал в подложке между истоком и стоком, и возникает ток.

Наличие заряда на "плавающем" затворе меняет вольт-амперные характеристики транзистора таким образом, что при обычном для чтения напряжении канал не появляется, и тока между истоком и стоком не возникает.

При программировании на сток и управляющий затвор подаётся высокое напряжение (причём на управляющий затвор напряжение подаётся приблизительно в два раза выше). "Горячие" электроны из канала инжектируются на плавающий затвор и изменяют вольт-амперные характеристики транзистора. Такие электроны называют "горячими" за то, что обладают высокой энергией, достаточной для преодоления потенциального барьера, создаваемого тонкой плёнкой диэлектрика.

При стирании высокое напряжение подаётся на исток. На управляющий затвор (опционально) подаётся высокое отрицательное напряжение. Электроны туннелируют на исток.

Эффект туннелирования - один из эффектов, использующих волновые свойства электрона. Сам эффект заключается в преодолении электроном потенциального барьера малой "толщины". Для наглядности представим себе структуру, состоящую из двух проводящих областей, разделенных тонким слоем диэлектрика (обеднённая область). Преодолеть этот слой обычным способом электрон не может - не хватает энергии. Но при создании определённых условий (соответствующее напряжение и т.п.) электрон проскакивает слой диэлектрика (туннелирует сквозь него), создавая ток.

Важно отметить, что при туннелировании электрон оказывается "по другую сторону", не проходя через диэлектрик. Такая вот "телепортация".

Различия методов тунеллирования Фаулера-Нордхейма (FN) и метода инжекции "горячих" электронов:

Channel FN tunneling - не требует большого напряжения. Ячейки, использующие FN, могут быть меньше ячеек, использующих CHE.

CHE injection (CHEI) - требует более высокого напряжения, по сравнению с FN. Таким образом, для работы памяти требуется поддержка двойного питания.

Программирование методом CHE осуществляется быстрее, чем методом FN.

Следует заметить, что, кроме FN и CHE, существуют другие методы программирования и стирания ячейки, которые успешно используются на практике, однако два описанных нами применяются чаще всего.

Процедуры стирания и записи сильно изнашивают ячейку флэш-памяти, поэтому в новейших микросхемах некоторых производителей применяются специальные алгоритмы, оптимизирующие процесс стирания-записи, а также алгоритмы, обеспечивающие равномерное использование всех ячеек в процессе функционирования.

Некоторые виды ячеек флэш-памяти на основе МОП-транзисторов с "плавающим" затвором:

Stacked Gate Cell - ячейка с многослойным затвором. Метод стирания - Source-Poly FN Tunneling, метод записи - Drain-Side CHE Injection.

SST Cell, или SuperFlash Split-Gate Cell (Silicon Storage Technology - компания-разработчик технологии) - ячейка с расщеплённым затвором. Метод стирания - Interpoly FN Tunneling, метод записи - Source-Side CHE Injection.

Two Transistor Thin Oxide Cell - двухтранзисторная ячейка с тонким слоем окисла. Метод стирания - Drain-Poly FN Tunneling, метод записи - Drain FN Tunneling.

Другие виды ячеек:

Кроме наиболее часто встречающихся ячеек с "плавающим" затвором, существуют также ячейки на основе SONOS-транзисторов, которые не содержат плавающего затвора. SONOS-транзистор напоминает обычный МНОП (MNOS) транзистор. В SONOS-ячейках функцию "плавающего" затвора и окружающего его изолятора выполняет композитный диэлектрик ONO. Расшифровывается SONOS (Semiconductor Oxide Nitride Oxide Semiconductor) как Полупроводник-Диэлектрик-Нитрид-Диэлектрик-Полупроводник. Вместо давшего название этому типу ячейки нитрида в будущем планируется использовать поликристаллический кремний.

Многоуровневые ячейки (MLC - Multi Level Cell).

В последнее время многие компании начали выпуск микросхем флэш-памяти, в которых одна ячейка хранит два бита. Технология хранения двух и более бит в одной ячейке получила название MLC (multilevel cell - многоуровневая ячейка). Достоверно известно об успешных тестах прототипов, хранящих 4 бита в одной ячейке. В настоящее время многие компании находятся в поисках предельного числа бит, которое способна хранить многоуровневая ячейка.

В технологии MLC используется аналоговая природа ячейки памяти. Как известно, обычная однобитная ячейка памяти может принимать два состояния - "0" или "1". Во флэш-памяти эти два состояния различаются по величине заряда, помещённого на "плавающий" затвор транзистора. В отличие от "обычной" флэш-памяти, MLC способна различать более двух величин зарядов, помещённых на "плавающий" затвор, и, соответственно, большее число состояний. При этом каждому состоянию в соответствие ставится определенная комбинация значений бит.

Во время записи на "плавающий" затвор помещается количество заряда, соответствующее необходимому состоянию. От величины заряда на "плавающем" затворе зависит пороговое напряжение транзистора. Пороговое напряжение транзистора можно измерить при чтении и определить по нему записанное состояние, а значит и записанную последовательность бит.

Основные преимущества MLC микросхем:

Более низкое соотношение $/МБ

При равном размере микросхем и одинаковом техпроцессе "обычной" и MLC-памяти, последняя способна хранить больше информации (размер ячейки тот же, а количество хранимых в ней бит - больше)

На основе MLC создаются микросхемы большего, чем на основе однобитных ячеек, объёма

Основные недостатки MLC:

Снижение надёжности, по сравнению с однобитными ячейками, и, соответственно, необходимость встраивать более сложный механизм коррекции ошибок (чем больше бит на ячейку - тем сложнее механизм коррекции ошибок)

Быстродействие микросхем на основе MLC зачастую ниже, чем у микросхем на основе однобитных ячеек

Хотя размер MLC-ячейки такой же, как и у однобитной, дополнительно тратится место на специфические схемы чтения/записи многоуровневых ячеек

Примечания: После появления MLC, "обычные" однобайтные ячейки классифицировали как одноуровневые ячейки - Single Level Cell (SLC). SONOS-ячейки могут также хранить два бита, однако принципиально отличным от описанного нами способа.

Технология многоуровневых ячеек от Intel (для NOR-памяти) носит название StrtaFlash, аналогичная от AMD (для NAND) - MirrorBit

Доступ к флэш-памяти

Существует три основных типа доступа:

обычный (Conventional): произвольный асинхронный доступ к ячейкам памяти.

пакетный (Burst): синхронный, данные читаются параллельно, блоками по 16 или 32 слова. Считанные данные передаются последовательно, передача синхронизируется. Преимущество перед обычным типом доступа - быстрое последовательное чтение данных. Недостаток - медленный произвольный доступ.

страничный (Page): асинхронный, блоками по 4 или 8 слов. Преимущества: очень быстрый произвольный доступ в пределах текущей страницы. Недостаток: относительно медленное переключение между страницами.

Примечание: В последнее время появились микросхемы флэш-памяти, позволяющие одновременную запись и стирание (RWW - Read While Write или Simultaneous R/W) в разные банки памяти.

41. Сегнетоэлектрическая память (FRAM)

Сегнетоэлектрики – это такие материалы, которые при изменении их параметров физически способны вырабатывать электрический ток или наоборот при пропускании через них тока, они способны изменять свои физические параметры. Некоторые из сегнетоэлектриков после снятия воздействия свои параметры сохраняют.

В цикл очередной записи требуется включить цикл записи по новой, для восстановления положения, что увеличивает время работы.

Сегнетоэлектрики, кристаллические диэлектрики, обладающие в определённом интервале температур спонтанной (самопроизвольной) поляризацией, которая существенно изменяется под влиянием внешних воздействий. Электрические свойства С. во многом подобны магнитным свойствам ферромагнетиков (отсюда название ферроэлектрики, принятое в зарубежной литературе). К числу наиболее исследованных и используемых на практике сегнетоэлектриков относятся титанат бария, сегнетова соль (давшая название всей группе кристаллов), триглицинсульфат, дигидрофосфат калия и др. Известно несколько сотен сегнетоэлектриков.

Наличие спонтанной поляризации, т. е. электрического дипольного момента в отсутствии электрического поля, — отличительная особенность более широкого класса диэлектриков, называется пироэлектриками. В отличие от других пироэлектриков, монокристаллические сегнетоэлектрики «податливы» по отношению к внешним воздействиям: величина и направление спонтанной поляризации могут сравнительно легко изменяться под действием электрического поля, упругих напряжений, при изменении температуры. Это обусловливает большое разнообразие эффектов, наблюдающихся в сегнетоэлектриках. Для других пироэлектриков изменение направления поляризации затруднено, т. к. требует радикальной перестройки структуры кристалла (рис. 1).

Рис. 1. Схематическое изображение элементарной ячейки пироэлектрика. Стрелки указывают направления электрических дипольных моментов.

Электрические поля, которые могли бы осуществить такую перестройку в пироэлектриках, существенно выше пробивных полей. В отличие от других пироэлектриков, спонтанная поляризация С. связана с небольшими смещениями ионов по отношению к их положениям в неполяризованном кристалле (рис. 2).

Рис. 2. Схематическое изображение элементарной ячейки сегнетоэлектрика в полярной фазе (а и б) и в неполярной фазе (в); стрелки указывают направление электрических дипольных моментов.

Обычно сегнетоэлектрики. не являются однородно поляризованными, а состоят из доменов (рис. 3) — областей с различными направлениями спонтанной поляризации, так что при отсутствии внешних воздействий суммарный электрический дипольный момент P образца практически равен нулю.

Рис. 3. Микрофотография доменов сегнетовой соли, полученная с использованием поляризованного света. Тёмные и светлые области отвечают доменам с противоположными направлениями спонтанной поляризации.

Рис. 4 поясняет причину образования доменов в идеальном кристалле.

Рис. 4. Взаимодействие электрического поля Е одной части образца со спонтанной поляризацией другой его части.

Электрическое поле, созданное спонтанной поляризацией одной части образца, воздействует на поляризацию другой части так, что энергетически выгоднее противоположная поляризация этих двух частей. Равновесная доменная структура сегнетоэлектриков определяется балансом между уменьшением энергии электростатического взаимодействия доменов при разбиении кристалла на домены и увеличением энергии от образования новых доменных границ, обладающих избыточной энергией. Число различных доменов и взаимная ориентация спонтанной поляризации в них определяются симметрией кристалла. Конфигурация доменов зависит от размеров и формы образца, на неё влияет характер распределения по образцу дефектов в кристаллах, внутренних напряжений и др. неоднородностей, неизбежно присутствующих в реальных кристаллах.

Наличие доменов существенно сказывается на свойствах сегнетоэлектриков. Под действием электрического поля доменные границы смещаются так, что объёмы доменов, поляризованных по полю, увеличиваются за счёт объёмов доменов, поляризованных против поля. Доменные границы обычно «закреплены» на дефектах и неоднородностях в кристалле, и необходимы электрического поля достаточной величины, чтобы их перемещать по образцу. В сильном поле образец целиком поляризуется по полю — становится однодомённым. После выключения поля в течение длительного времени образец остаётся поляризованным. Необходимо достаточно сильное электрическое поле противоположного направления, называется коэрцитивным, чтобы суммарные объёмы доменов противоположного знака сравнялись. В сильном поле происходит полная переполяризация образца. Зависимость поляризации P образца от напряжённости электрического поля Е нелинейна и имеет вид петли гистерезиса.

Сильное изменение поляризации образца под действием электрического поля за счёт смещения доменных границ обусловливает тот факт, что диэлектрическая проницаемость e многодомéнного сегнетоэлектрика. больше, чем однодомённого. Значение e тем больше, чем слабее закреплены доменные границы на дефектах и на поверхности кристалла. Величина e всегнетоэлектриках существенно зависит от напряжённости электрического поля, т. е. сегнетоэлектрики обладают нелинейными свойствами.

При нагревании сегнетоэлектриков спонтанная поляризация, как правило, исчезает при определённой температуре Тс, называется точкой Кюри, т. е. происходит фазовый переходсегнетоэлектриков из состояния со спонтанной поляризацией (полярная фаза) в состояние, в котором спонтанная поляризация отсутствует (неполярная фаза). Фазовый переход в С. состоит в перестройке структуры кристалла (в отличие от магнетиков).

Величина спонтанной поляризации Ps обычно сильно изменяется с температурой вблизи фазового перехода. Она исчезает в самой точке Кюри Тс либо скачком (фазовый переход 1-го рода, например в титанате бария), либо плавно уменьшаясь (фазовый переход 2-го рода, например в сегнетовой соли). Существенную температурную зависимость, как в полярной, так и в неполярной фазах, испытывает диэлектрическую проницаемость e, а также некоторые из упругих, пьезоэлектрических и др. констант сегнетоэлектриков. Резкий рост e с приближением к точке Кюри (рис. 5) связан с увеличением «податливости» кристалла по отношению к изменению поляризации, т. е. к тем смещениям ионов, которые приводят к изменению структуры при фазовом переходе.

Рис. 5. Зависимость Ps(T) и E(Т) для триглицинсульфата. Индексы а, b, с соответствуют направлению вдоль трёх кристаллографических осей. Спонтанная поляризация возникает вдоль оси b.

Возникновение поляризации при переходе сегнетоэлектрика в полярную фазу может быть вызвано либо смещением ионов (фазовый переход типа смещения, например в титанате бария, рис. 2), либо упорядочением ориентации электрических диполей, существовавших и в неполярной фазе (фазовый переход типа порядок — беспорядок, например в дигидрофосфате калия). В некоторых сегнетоэлектриках спонтанная поляризация может возникать как вторичный эффект, сопровождающий перестройку структуры кристалла, не связанную непосредственно с поляризацией. Такие сегнетоэлектрики называются несобственными (например, молибдат гадолиния), обладают рядом особенностей: e слабо зависит от Т, в точке Кюри значение e невелико, и др.

В области фазового перехода наблюдаются изменения и в фононном спектре кристалла. Они наиболее четко выражены для переходов типа смещения. Частота одного из оптических колебаний кристаллической решётки существенно падает при приближении к Тс, особенно, если этот фазовый переход 2-го рода.

Все сегнетоэлектрики в полярной фазе являются пьезоэлектриками. Пьезоэлектрические постоянные сегнетоэлектриков могут иметь сравнительно с другими пьезоэлектриками большие значения, что связано с большими величинами e. Большие значения имеют также пироэлектрические постоянные сегнетоэлектриков из-за сильной зависимости Ps (T).

Сегнетоэлектрическими свойствами обладают некоторые полупроводники и магнитоупорядоченные вещества. Сочетание различных свойств приводит к новым эффектам, например магнитоэлектрическим. В некоторых диэлектриках при фазовом переходе с изменением кристаллической структуры спонтанная поляризация не возникает, но наблюдаются, однако, диэлектрической аномалии, сходные с аномалиями при сегнетоэлектрических переходах: заметное изменение e, а также двойные петли гистерезиса. Такие диэлектрики часто называются антисегнетоэлектриками, хотя наблюдаемые свойства, как правило, не связаны с исторически возникшими представлениями об антипараллельных дипольных структурах.

Сегнетоэлектрические материалы (монокристаллы, керамика, плёнки) широко применяются в технике и в научном эксперименте. Благодаря большим значениям e их используют в качестве материала для конденсаторов высокой удельной ёмкости. Большие значения пьезоэлектрических констант обусловливают применение С. в качестве пьезоэлектрических материалов в приёмниках и излучателях ультразвука, в преобразователях звуковых сигналов в электрические и наоборот, в датчиках давления и др. Резкое изменение сопротивления вблизи температуры фазового перехода в некоторых сегнетоэлектриках используется в позисторах для контроля и измерения температуры. Сильная температурная зависимость спонтанной поляризации (большая величина пироэлектрические константы) позволяет применять сегнетоэлектрики в приёмниках электромагнитных излучений переменной интенсивности в широком диапазоне длин волн (от видимого до субмиллиметрового). Благодаря сильной зависимости e от электрического поля сегнетоэлектрики используют в нелинейных конденсаторах (варикондах), которые нашли применение в системах автоматики, контроля и управления. Зависимость показателя преломления от поля обусловливает использование сегнетоэлектриков в качестве электрооптических материалов в приборах и устройствах управления световыми пучками, включая визуализацию инфракрасного изображения. Перспективно применение сегнетоэлектриков в устройствах памяти вычислительных машин, дистанционного контроля и измерения температуры и др.

Сегнетоэлектрическое ОЗУ (далее FRAM) обладает уникальными свойствами, которые отличают ее от других видов запоминающих устройств. Традиционные полупроводниковые запоминающие устройства можно разделить на две основные группы – энергозависимые и энергонезависимые. К энергозависимой памяти относятся статические оперативные запоминающие устройства (СОЗУ) и динамические оперативные запоминающие устройства (ДОЗУ). Их общим свойством является нарушение содержимого ячеек памяти после снятия напряжения питания. С прикладной точки зрения ОЗУ очень просты в использовании и обладают высоким быстродействием чтения и записи, но также имеют досадную особенность терять данные при исчезновении питания.

Энергонезависимая память (ЭНП) не теряет данных при снятии питания. Однако все основные типы ЭНП имеют общие истоки, которые берут свое начало от постоянных запоминающих устройств (ПЗУ). Тем, кто знаком с этой технологией знает насколько сложно осуществить запись информации в ПЗУ, а выполнить запись мгновенно вообще не возможно. Все последующие приемники этой технологии связаны проблемой сложности записи в них новой информации. В настоящее время известны следующие разновидности этой технологии: электрически перепрограммируемое ПЗУ - ЭППЗУ (морально устаревшая технология), электрически стираемое перепрограммируемое ПЗУ – ЭСППЗУ и флэш-память. Технологии на основе ПЗУ обладают медленной записью, подвержены существенному износу при записи, ограничивая количество циклов программирования, и требуют много энергии для программирования.

Отличием FRAM является использование технологии ОЗУ, при этом сохраняя энергонезависимость подобно ПЗУ. Таким образом, FRAM заполняет пробел между двумя категориями и создает нечто новое – энергонезависимое ОЗУ. Технология FRAM

Ядром сегнетоэлектрической FRAM-технологии от Ramtron являются сегнетоэлектрические кристаллы, которые позволяют законченным FRAM-изделиям работать подобно ОЗУ, при этом обеспечивая энергонезависимость хранения данных.

Когда электрическое поле прикладывается к сегнетоэлектрическому кристаллу, центральный атом движется в его направлении. Т.к. атом перемещается в пределах кристалла он проходит энергетический барьер, сопровождаемый спонтанной поляризацией. Внутренняя схема позволяет определить величину заряда и состояние памяти. Если электрическое поле отведено от кристалла, то центральный атом остается в том же положении, определяя состояние памяти. Поэтому, FRAM не нуждается в регенерации и после отключения питания сохраняет свое содержимое. Все происходит быстро и без износа!

FRAM-технология совместима со стандартной промышленной технологией КМОП. Сегнетоэлектрическая тонкая пленка размещена над основными КМОП слоями и сжата между двумя электродами. Технологический процесс сборки завершают металл для внешнего подключения и пассивация.

Технология FRAM от Ramtron имеет также историю развития. Первоначально, архитектура FRAM требовала два транзистора и два конденсатора (2T/2C), что привело к относительно большим размерам ячейки памяти. Недавние улучшения сегнетоэлектрических материалов и технологии позволили избавиться от необходимости применения опорного конденсатора в каждой ячейки массива сегнетоэлектрической памяти. Новая однотранзисторная-одноконденсаторная архитектура от Ramtron работает подобно ДОЗУ, используя один конденсатор в качестве общего опорного конденсатора для каждого столбца массива памяти, тем самым позволив в два раза уменьшить требуемый размер ячейки по сравнению с архитектурой 2T/2C. Новая архитектура существенно улучшает влияние кристалла и уменьшает производственную стоимость конечных изделий – микросхем FRAM-памяти.

Ramtron также стремиться уменьшать шаг технологической сетки, чтобы снизить себестоимость ячеек FRAM памяти. Так недавний переход на 0.35мкм технологию позволил снизить потребляемую мощность и увеличить размер матрицы по сравнению с предшествующими поколениями FRAM памяти, выполненных по 0.5 мкм технологии.

Ближайшей перспективой совершенствования архитектуры FRAM-памяти является также использование архитектуры 1Т/1С, но с размещением сегнетоэлектрического конденсатора над транзистором. Это будет способствовать дальнейшему уменьшению размеру ячеек памяти и переходу на шаг технологической сетки до 0.1мкм. Достижение этих результатов позволит в будущем преодолеть, пожалуй, единственный недостаток по сравнению с существующими популярными технологиями ЭНП – ограниченный размер памяти (до 32 кБ).

Все рассмотренные технологии FRAM-памяти находят применение во многих приложениях, с которыми люди сталкиваются ежедневно. FRAM содержится в большом количестве изделий и приложений по всему миру от офисных копиров и высокопроизводительных серверов до автомобильных бортовых самописцев (черных ящиков) и электронных развлекательных устройств.

42. Магниторезистивная память (MRAM)

Чип, названный "магниторезистивная оперативная память" (Mram - magnetoresistive random-access memory), хранит информацию при помощи магнитного, а не электрического заряда.

Основные преимущества:

  1. Произвольная адресация,

  2. Очень высокая скорость записи,

  3. Низкое энергопотребление,

  4. Энергонезависимость,

  5. Неограниченное число циклов перезаписи.

Высокое быстродействие позволяет использовать эту память в качестве оперативной энергонезависимой памяти.

В ячейках магниторезистивной памяти использован принцип работы магниторезистивной считывающей головки винчестера.

Магниторезистивная ячейка состоит из 2 ферромагнетиков, направление намагниченности одного из них не изменяется, а направление верхнего можно изменить на противоположное.

Плёнка магниторезистивная, расположена между двумя этими магнитами, изменяет своё сопротивление в зависимости от того, совпадает или нет направление намагниченности в ферромагнитных слоях. При считывании в одном и другом случаях через ячейку будет протекать различный ток.

Быстродействие данной памяти сравнимо с быстродействием динамической оперативной памяти, частота 300 МГц, быстродействие 3 нс.

Фирма Freescale уже наладила производство 4-мегабитных чипов Mram на предприятии в штате Аризона в 2006 году.

В последние 10 лет разработками этой технологии занимались несколько компаний, в том числе IBM, однако Freescale первой удалось предложить чип, который можно практически использовать уже сегодня.

В последние годы многие пытались работать в этой области, но никому не удавалось довести дело до промышленного производства.

В отличие от флэш-памяти, которая также способна хранить информацию без электропитания, Mram обладает более высокой скоростью считывания и записи, причем сохраняет эту характеристику с течением времени.

В нынешних чипах оперативной памяти (RAM), важной составной части многих электронных приборов, - например, персональных компьютеров, - информация теряется после отключения электропитания.

Флэш-память используется в портативных устройствах, таких как музыкальные плееры, цифровые фотоаппараты, часто в виде карточек.

Чипы Mram, содержащие оперативную систему персонального компьютера, позволят значительно увеличить скорость загрузки при включении машины.

Среди достоинств новых устройств можно отметить высокую скорость записи/чтения информации, которая почти вдвое превосходит аналогичный показатель для чипов флэш-памяти – 200 Мбайт/с против 108 Мбайт/с, а также энергонезависимость, что выгодно отличает MRAM от динамической и статической памяти.

Ещё одним важным достоинство является практически бесконечный срок службы подобных устройств, в то время как чипы флэш-памяти рассчитаны на 100 тыс. – 1 млн. циклов записи/перезаписи. Естественно, MRAM-память может использоваться и в сменных накопителях, однако более интересной является возможность использования новых устройств в качестве ОЗУ. Несмотря на тот факт, что скорость передачи данных чипов MRAM относительно низкая (по сравнению с DRAM и, тем более, с SRAM), энергонезависимость позволит компьютерным системам стартовать практически мгновенно, не производя загрузку файлов в оперативную память – вся необходимая информация уже будет храниться в MRAM-чипах.

Вполне возможно, что в дальнейшем скорость чтения/записи информации будет повышена, но основной проблемой пока является высокая стоимость подобных устройств. Тем не менее, с развитием технологии производства чипов MRAM их стоимость будет стремительно снижаться.

Несмотря на все перспективы собственной разработки, компания Freescale Semiconductor не будет заниматься производством чипов – по лицензионным соглашениям изготовлять MRAM-устройства будут сторонние компании. Стоит также отметить, что аналогичные разработки ведут исследователи Toshiba, NEC и IBM, однако именно Freescale принадлежит лидерство в области создания новых устройств хранения информации.