Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1yy_kollokvium.doc
Скачиваний:
38
Добавлен:
31.03.2015
Размер:
320.51 Кб
Скачать

Билет 4

1. Прокариоты и эукариоты Прокариоты – древнейшие. Носитель информации - молекула ДНК, нуклеоид. Нет гистонов, обеспечивающих нуклеосомную организацию хроматина. Нет митохондрий, эндоплазматической сети, аппарата Гольджи. Вместо них – мезосомы. Размножаются делением. Это бактерии, син-зел водоросли, риккетсии, микоплазмы и др. Эукариоты – в клетках есть ядра с оболочкой – кариолеммой. Ядерная ДНК заключена в хромосомы. В цитоплазме есть органоиды:митохондрии, эндоплазм. Сеть, ап. Гольджи, лизосомы, рибосомы. Размножение – митоз или мейоз. Гипотезы происхождения эукариотов : этап эволюции1.5 млрд лет назад, первоначально – одноклеточные, потом – многоклеточные, органеллы, напр митохондрии – от внутриклеточных аэробных симбионтов.

2. Жизненный цикл клеток – период существования от образования клетки до ее собственного деления или гибели:фаза деления, фаза роста, фаза покоя, фаза специализации или дифференциации, фаза зрелости, фаза старения, деление или гибель.

Митотический цикл.

Митоз - непрямое деление клетки, в результате которого сначала происходит удвоение наследственного материала, а затем его равномерное распределение между двумя дочер­ними клетками. На процесс деления клетки митозом уходит 1-3 часа. Промежуток между двумя клеточными делениями называют интер­фазой, продолжительность которой обычно занимает около 90% времени клеточного цикла (рис. 4. 25).

Интерфаза состоит из трех периодов.

пресинтетический период (G1), который начинается сра­зу же за завершением предыдущего митоза. В этот период в клетке синтезируются РНК и белки, образуется достаточноечисло органоидов, клетка растет. Количество генетического ма­териала в клетке не меняется. Число хромосом в клетке равно двойному, гаплоидному (2п), но каждая хромосома все еще состоит из одной хроматиды, то есть из одной молекулы ДНК.Таким образом, формула клетки в этот период — 2п2с;

синтетический период (S) характеризуется тем, что про­исходит удвоение молекул ДНК, и к концу этого периода каж­дая хромосома состоит из двух одинаковых хроматид, а значит, из двух абсолютно одинаковых молекул ДНК. Таким образом, формула клетки становится: 2п4с;в течение постсинтетического периода (G2) происходит подготовка клетки к делению: синтезируются белки, необхо­ ёдимые для образования веретена деления и для формирования хромосом; запасается АТФ. Формула клетки не меняется, оста­ ваясь 2п4с.

Непосредственно процесс деления клетки подразделяют на четыре фазы: профазу, метафазу, анафазу и телофазу В профазе происходит спирализация хромосом. Оболочка ядра разрушается. Центриоли расходятся к полюсам клетки. Формируется веретено деления — 2п4с.

В метафазе хромосомы располагаются в экваториальной плоскости клетки. Нити веретена деления прикрепляются к центромерам хромосом — 2п4с.

В анафазе центромеры делятся, и хроматиды хромосом рас­ходятся к полюсам клетки за счет укорочения нитей веретена деления. Формула клетки становится 4п4с.

В телофазе заканчивается кариокинез — деление ядра. Хромо­сомы деспирализуются, образуется ядерная оболочка. А далее происходит цитокинез — деление клетки. В конце телофазы из материнской клетки (4п4с) образуются две идентичные клет­ки с наборами генетического материала 2п2с.

Биологическое значение митоза в том, что в итоге его об­разуются две клетки с совершенно одинаковой наследственной информацией. Митоз позволяет увеличивать число клеток в организме, обеспечивая рост, вегетативное размножение, ре­генерацию и заживление повреждений тела.

Ствол клетки – камбиальные клетки, родоначальные в обновляющихся тканях животных (кроветворной, лимфоидной, эпидермисе, пищеварительном тракте и др.) Размножение и дифференцировка ствол. Кл-к восстанавливает потерю специализ. Кл-к при их естественной или аварийной гибели Ст. Кл-кт индивидуальны для каждого тканевого типа. Напр. из ст. кроветв кл-кт обр-ся эритроциты, лейкоциты или мегакариоциты

Дифференцировка – возникновение различий между однородными клетками и тканями в ходе развития особи, приводящие к формированию специализированных клеток, органов и тканей, т.е. приобретаются хим., морфологические и функцион. Особенности. Например мезодерма – нефротом – эпителий почек и семявыносящих путей. Гл факторы – различия цитоплазмы ранних эмбриональных клеток и специфические влияния соседних клеток – индукция. Молек-ген основа диф-ки – активность специф. для каждого вида ткани генов. Экспрессия гена в признак – сложный этапный процесс. Виды – обратимая и необратимая.

Регуляция пролиферации и дифференцировки клеток: геномная, внутриклеточные и тканевые регуляторы (фактор роста нервов, др), индукция клеточная и частей органов, целых органови частей системы друг на друга, гормоны. Мутации как сбой регуляции.

Уровни организации хроматина: ДНК – нуклоеосомная нить – элементарная хроматиновая фибрилла – интерфазная хромонема (укладка в петли, далее глыбки хроматина как компактная структура)– метафазная хроматида (суперспирализация, отдельные хромосомы хорошо различимы). Ядерная структура в интерфазе называется хроматин, в метафазе - хромосома

Билет 5

1.Биол мембрана. – важная роль в компартментации. Функции: барьерная, регуляция и избирательная проницаемость веществ, раздел гидрофильной и гидрофобной поверхности с размещением на границе ферментных комплексов, рецепторная роль включений в мембрану, структурная. Функциональная специализация мембран клетки из-за отличия молекулярного состава. Молекулярная организация – бимолекулярный слой липидов, гидрофобные участки обращены друг к другу, гидрофильные – на поверхности слоя. Белковые молекулы встроены в слой или размещены на его поверхностях. Сложные структуры – гликопротеиды. Металлопротеиды. Глико-липиды как компоненты мембран, обеспечивающие специализацию.

2. Прокариоты и эукариоты Прокариоты – древнейшие. Носитель информации - молекула ДНК, нуклеоид. Нет гистонов, обеспечивающих нуклеосомную организацию хроматина. Нет митохондрий, эндоплазматической сети, аппарата Гольджи. Вместо них – мезосомы. Размножаются делением. Это бактерии, син-зел водоросли, риккетсии, микоплазмы и др.

3. Регуляция пролиферации и дифференцировки клеток: геномная, внутриклеточные и тканевые регуляторы (фактор роста нервов, др) , гормоны, биогенные амины, др, индукция клеточная и частей органов, целых органов и частей системы друг на друга. Мутации как сбой регуляции.

4. Жизненный цикл клеток – период существования от образования клетки до ее собственного деления или гибели:фаза деления, фаза роста, фаза покоя, фаза специализации или дифференциации, фаза зрелости, фаза старения, деление или гибель.

Билет 6

1. Органеллы – постоянные клеточные структуры, обеспечивающие выполнение специфических функций в процессе жизнедеятельности клетки. В эукариот. клетке к ним относят хромосомы, клеточную мембрану. Аппарат Гольджи,ЭПС, рибосомы, микротрубочки, микрофиламенты, лизосомы, в животных клетках также присутствуют центриоли, микрофибриллы, в растительных только свойственные им пластиды. Прокариоты имеют лишь клеточную мембрану и рибосомы, отличающиеся от рибосом эукариот. К специф органеллам относят жгутики, реснички Хромосомы - это важнейшие органоиды ядра, содержащие ДНК в комплексе с основными белками — гистонами; этот комплекс составляет около 90% вещества хромосом. Хромосо­мы могут иметь длину, в десятки и сотни раз превышающую диаметр ядра. В интерфазу (период между делениями) хромо­сомы видны только под электронным микроскопом и пред­ставляют собой длинные тонкие нити, именуемые хроматином (деспирализованное состояние хромосом). В этот период идет процесс удвоения (редупликации) хромосом; в конце интерфа­зы каждая хромосома состоит из двух хроматид. Каждая хро­мосома имеет первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одина­ковой или разной длины. Центромера служит местом прикреп­ления нити веретена деления. У ядрышковых хромосом име­ется еще вторичная перетяжка, где формируется ядрышко.

Функция хромосом заключается в контроле над всеми про­цессами жизнедеятельности клетки. Хромосомы служат носи­телями генов, то есть носителями генетической информации.

Цитоплазма — живое содержимое клетки, состоит из мембран и органоидов (ЭПС, рибосом, митохондрий, пластид, аппарата Гольджи, лизосом, центриолей и др.). Пространство между ними заполнено коллоидным раствором — гиалоплазмой. Снаружи цитоплазма ограничена клеточной мембраной (плазмалеммой), внутри — мембраной ядерной оболочки. У растительных клеток имеется еще и внутренняя пограничная мембрана, отделяющая клеточный сок и образующая вакуоль.

Цитоплазма содержит большое количество воды с растворен­ными в ней солями и органические вещества. Цитоплазма — это среда для внутриклеточных физиологических и биохимических процессов. Она способна к движению: круговому, струйчатому, ресничному.

Плазмалемма — это биологическая клеточная мембрана, ок­ружающая цитоплазму (рис. 4. 15). В основе ее строения лежит двойной слой липидов — водонерастворимых молекул, имеющих полярные «головки» и длинные неполярные «хвосты», представленные цепями жирных кислот; больше всего в мембранах представлены фосфолипиды, в головках которых содержатся остатки фосфорной кислоты. Хвосты липидных молекул обра­щены друг к другу, полярные головки смотрят наружу, образуя гидрофильную поверхность. С заряженными головками соеди­няются белки (их называют «периферические мембранные бел­ки»). Другие белковые молекулы могут быть погружены в слой липидов за счет взаимодействия с их неполярными хвостами. Часть белков пронизывает мембрану насквозь, образуя каналы или поры. У некоторых клеток мембрана является единствен­ной структурой, служащей оболочкой, у других клеток поверх мембраны имеется дополнительная клеточная стенка (напри­мер, целлюлозная оболочка у растительных клеток). Животные клетки снаружи от мембраны бывают покрыты тонким слоем, состоящим из белков и полисахаридов — гликокаликсом.

Клеточная мембрана выполняет множество важных функ­ций, от которых зависит жизнедеятельность клеток:

образует барьер между внутренним содержимым клетки и внешней средой;

обеспечивает обмен веществ между цитоплазмой и внешней средой, из которой в клетку через мембрану поступают вода, ионы, неорганические и органические молекулы, а во внеш­ нюю среду через мембрану выводятся продукты обмена и вещества, синтезированные в клетке; транспорт веществ че­ рез мембрану осуществляется разными способами: крупные молекулы биополимеров поступают через мембрану благо­ даря фагоцитозу, явлению, впервые описанному И. И. Меч­ никовым, а процесс захвата и поглощения капелек жидко­ сти происходит путем пиноцитоза;

• несет большое число рецепторов — специальных белков, роль которых заключается в передаче сигналов внутрь клетки. Эндоплазматическая сеть (ЭПС), или эндоплазматический

ретикулум (ЭПР), — это сеть каналов, пронизывающая всю цитоплазму. Стенки этих каналов представляют собой мембра­ны, контактирующие со всеми органоидами клетки. ЭПС и орга­ноиды вместе составляют единую внутриклеточную систему, которая осуществляет обмен веществ и энергии в клетке и обеспечивает внутриклеточный транспорт веществ.

Различают гладкую и гранулярную ЭПС. Гранулярная (ше­роховатая) ЭПС состоит из мембранных мешочков (цистерн), покрытых рибосомами, благодаря чему она кажется шерохова­той. Гладкая ЭПС лишена рибосом, ее строение ближе к труб­чатому типу. На рибосомах гранулярной сети синтезируются белки, которые затем поступают внутрь каналов ЭПС, где и

приобретают третичную структуру. На мембранах гладкой ЭПС синтезируются липиды и углеводы, которые также поступают внутрь каналов ЭПС.

ЭПС выполняет функции:

•участвует в синтезе органических веществ; •транспортирует синтезированные вещества в комплекс

Гольджи;

•разделяет клетку на отсеки.

ЭПС имеется во всех клетках, исключая бактериальные и эритроциты. Она составляет от 30 до 50% объема клетки.

Комплекс Гольджи — это сложная сеть полостей, трубочек и пузырьков вокруг ядра. Состоит из трех основных компонен­тов: группы мембранных полостей, системы трубочек, отходя­щих от полостей и пузырьков на концах трубочек. Функции комплекса Гольджи:

в его полостях накапливаются вещества, которые синтези­ руются и транспортируются по ЭПС;

здесь вещества подвергаются химическим изменениям;

модифицированные вещества упаковываются в мембран­ ные пузырьки, которые выбрасываются клеткой в виде сек­ ретов:

пузырьки используются клеткой в качестве лизосом. Лизосомы — это небольшие пузырьки диаметром примерно

1 мкм, ограниченные мембраной и содержащие комплекс фер­ментов, который обеспечивает расщепление жиров, углеводов и белков. Они участвуют в переваривании частиц, попавших в клетку в результате эндоцитоза, и в удалении отмирающих ор­ганов (например, хвоста у головастиков), клеток и органоидов. При голодании лизосомы растворяют некоторые органоиды, не убивая при этом клетку. Образование лизосом идет в комплексе Гольджи.

Митохондрии — внутриклеточные органоиды, оболочка ко­торых состоит из двух мембран (рис. 4. 16).

Наружная мембрана гладкая, внутренняя образует выросты, называемые кристами. Внутри митохондрии находится полу­жидкий матрикс, который содержит РНК, ДНК, белки, липи­ды, углеводы, ферменты, АТФ и другие вещества. В матриксе тоже есть рибосомы. Число митохондрий зависит от вида клет­ки. Митохондрии могут быть спиральными, округлыми, вытя­нутыми, чашевидными, а также могут менять форму.

Функции митохондрий связаны с тем, что на внутренней мембране находятся ферменты дыхательные и синтеза АТФ. Благодаря этому митохондрии обеспечивают и клеточное ды­хание, и синтез АТФ.

Митохондрии могут сами синтезировать белки, так как в них есть собственные ДНК, РНК и рибосомы. Размножают­ся митохондрии делением надвое.

Хлоропласты относят к пластидам, то есть органоидам, при­сущим только растительным клеткам. Это зеленые пластинки, диаметром 3—4 мкм, имеющие овальную форму. Хлоропласты, как и митохондрии, имеют наружную и внутреннюю мембра­ны (рис. 4. 17).

Внутренняя мембрана образует выросты — тилакоиды, ти-лакоиды образуют стопки — граны, которые объединяются друг с другом внутренней мембраной. В одном хлоропласте может быть несколько десятков гран. В мембранах тилакоидов нахо­дится хлорофилл, а в промежутках между гранами в матриксе (строме) хлоропласта находятся рибосомы, РНК и ДНК. На ри­босомах хлоропластов, как и на рибосомах митохондрий, идет синтез белков.

Основная функция хлоропластов - обеспечение процесса фо­тосинтеза: в мембранах тилакоидов идет световая фаза, а в стро­ме хлоропластов — темновая фаза фотосинтеза. В матриксе хлоропластов видны гранулы первичного крахмала, то есть крахмала, синтезированного в процессе фотосинтеза из глю­козы.

Хлоропласты, как и митохондрии, размножаются делением. Таким образом, в морфологической и функциональной орга­низации митохондрий и хлоропластов есть общие черты. Основ­ная характеристика, объединяющая эти органоиды, состоит в том, что они имеют собственную генетическую информацию и синтезируют собственные белки.

Клеточный центр относится к немембранным компонентам клетки. В состав его входят микротрубочки и две центриоли. Центриоли находятся в середине центра организации микротрубочек. Центриоли обнаружены не во всех клетках, имеющих клеточный центр (например, их нет у покрытосеменных рас­тений). Каждая центриоль - это цилиндр размером около 1 мкм, по окружности которого расположены девять триплетов мик­ротрубочек. Центриоли располагаются под прямым углом друг к другу (рис. 4. 18).

Перед делением центриоли расходятся к противоположным полюсам клетки, и возле каждой из них возникает дочерняя центриоль. От центриолей протягиваются микротрубочки, ко­торые образуют митотическое веретено деления. Часть нитей веретена прикрепляется к хромосомам. Формирование нитей веретена происходит в профазе.

Рибосомы — это субмикроскопические органоиды диаметром 15—35 нм, которые были открыты во всех клетках с помощью электронного микроскопа. В каждой клетке может быть не­сколько тысяч рибосом. Большая их часть образуется в ядрыш­ке ядра в виде субъединиц (большой и малой) и затем перехо­дит в цитоплазму. Мембран не имеют. В состав рибосом входят р-РНК и белки.

На рибосомах идет синтез белков. Большая часть белков синтезируется на шероховатой ЭПС; частично синтез белков идет на рибосомах, находящихся в цитоплазме в свободном состоянии. Группы из нескольких десятков рибосом образуют полисомы.ров, а также кристаллические включения (органические крис­таллы, которые могут образовывать в клетках белки, вирусы, соли щавелевой кислоты и т. д. и неорганические кристаллы, образованные солями кальция). В отличие от органоидов, эти включения не имеют мембран или элементов цитоскелета и пе­риодически синтезируются и расходуются.К клеточным органоидам движения относят реснички и жгутики — это выросты мемб­раны диаметром около 0,25 мкм, содержащие в середине микротрубочки. Такие органо­иды имеются у многих клеток: у простейших, у одноклеточных водорослей, у зооспор, у спер­матозоидов, в клетках тканей многоклеточных животных, на­пример в дыхательном эпите­лии для продвижения слизи.

Клеточные включения — это непостоянные структуры клет­ки. К ним относятся капли и зерна белков, углеводов, жиров

.

2. процессинг – совокупность реакций, ведущих к превращению продуктов транскрипции и трансляции в функционирующие молекулыю Ему подвергаются предшественники тРНК, р РНК, м РНК и мню белков. Сущность процессинга у эукариот в изменении первичного транскрипта, удалении из него некодирующих концевых интронных участков с последующим соединением (сплайсингом) кодирующих последовательностей (экзонов). Процессинг происходит в ядре. В отличие от эукариот прокариотические гены целиком состоят из нукоеотидных последовательностей, участвующих в кодировании информации, в связи ч с чем, сразу после транскрипции РНК могут выполнять роль матриц для трансляции. Процессинг у прокариот требуется очень редко.

3. Митоз - непрямое деление клетки, в результате которого сначала происходит удвоение наследственного материала, а затем его равномерное распределение между двумя дочер­ними клетками. На процесс деления клетки митозом уходит 1-3 часа. Промежуток между двумя клеточными делениями называют интер­фазой, продолжительность которой обычно занимает около 90% времени клеточного цикла (рис. 4. 25).

Интерфаза состоит из трех периодов.

пресинтетический период (G1), который начинается сра­зу же за завершением предыдущего митоза. В этот период в клетке синтезируются РНК и белки, образуется достаточноечисло органоидов, клетка растет. Количество генетического ма­териала в клетке не меняется. Число хромосом в клетке равно двойному, гаплоидному (2п), но каждая хромосома все еще состоит из одной хроматиды, то есть из одной молекулы ДНК.Таким образом, формула клетки в этот период — 2п2с;

синтетический период (S) характеризуется тем, что про­исходит удвоение молекул ДНК, и к концу этого периода каж­дая хромосома состоит из двух одинаковых хроматид, а значит, из двух абсолютно одинаковых молекул ДНК. Таким образом, формула клетки становится: 2п4с;в течение постсинтетического периода (G2) происходит подготовка клетки к делению: синтезируются белки, необхо­ ёдимые для образования веретена деления и для формирования хромосом; запасается АТФ. Формула клетки не меняется, оста­ ваясь 2п4с.

Непосредственно процесс деления клетки подразделяют на четыре фазы: профазу, метафазу, анафазу и телофазу В профазе происходит спирализация хромосом. Оболочка ядра разрушается. Центриоли расходятся к полюсам клетки. Формируется веретено деления — 2п4с.

В метафазе хромосомы располагаются в экваториальной плоскости клетки. Нити веретена деления прикрепляются к центромерам хромосом — 2п4с.

В анафазе центромеры делятся, и хроматиды хромосом рас­ходятся к полюсам клетки за счет укорочения нитей веретена деления. Формула клетки становится 4п4с.

В телофазе заканчивается кариокинез — деление ядра. Хромо­сомы деспирализуются, образуется ядерная оболочка. А далее происходит цитокинез — деление клетки. В конце телофазы из материнской клетки (4п4с) образуются две идентичные клет­ки с наборами генетического материала 2п2с.

Биологическое значение митоза в том, что в итоге его об­разуются две клетки с совершенно одинаковой наследственной информацией. Митоз позволяет увеличивать число клеток в организме, обеспечивая рост, вегетативное размножение, ре­генерацию и заживление повреждений тела.

4. митоз у разл. Видов организмов. В основе самовоспроизведения организмов, размножающихся бесполым путем лежит митоз, обеспечивающий сохранение постоянства структуры наследственного материала. Митоз – способ получения клеточных линий млекопитающих.