Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1yy_kollokvium.doc
Скачиваний:
38
Добавлен:
31.03.2015
Размер:
320.51 Кб
Скачать

Билет 7

1, Неорганические вещества клетки - это вода и минераль­ные соли.

Содержание воды выше в клетках с интенсивным обменом веществ. В клетках эмбрионов млекопитающих до 85% воды, а в клетках старческого организма — 65%. Различается содер­жание воды и в клетках различных тканей, например в клет­ках мозга воды не менее 80%, а в клетках костной ткани — не более 20%. Вода выполняет в клетке целый ряд функций: растворяет вещества, что дает возможность протекания хи­мических реакций; все реакции в клетке происходят в ра­створах;

•является участником многих химических реакций, происхо­дящих в клетках (например, фотосинтеза);

придает клеткам упругость; обеспечивает процесс теплового равновесия клетки и целого организма;

•обеспечивает транспорт веществ от клетки к клетке. Минеральные соли, и отдельные химические элементы уча­ствуют во всех реакциях, происходящих в живых клетках. Чаще всего они входят в состав небелковой части молекул ферментов под названием коферментов.

Важнейшие органические вещества клетки - белки, угле­воды, липиды, нуклеиновые кислоты и АТФ.

Белки — это гетерополимеры, состоящие из 20 различных мономеров — природных альфа-аминокислот, то есть нерегу­лярные полимеры.

Общее строение аминокислоты может быть представлено следующим образом:

R-C(NH2)-COOH.

Аминокислоты в белке связаны пептидной связью:

-N(H)-C(=.O)

Аминокислоты разделяют на заменимые, которые синтези­руются в самом организме, и незаменимые, которые животный организм получает с пищей.

Среди белков различают протеины, которые состоят только из аминокислот, и протеиды, содержащие небелковую часть (например, гемоглобин состоит из белка — глобина и порфи-рина — гема).

В строении молекулы белка различают первичную структу­ру — последовательность аминокислотных остатков; вторичную — как правило, это спиральная структура (альфа-спираль), кото­рая удерживается множеством водородных связей, возникающих между находящимся близко друг от друга С=О и NH-группами. Другой тип вторичной структуры — бета-слой, или складчатый слой — это две параллельные полипептидные цепи, связанные водородными связями, перпендикулярными цепям.

Третичная структура белковой молекулы — это простран­ственная конфигурация, напоминающая компактную глобулу. Она поддерживается ионными, водородными и дисульфидны-ми (S-S) связями, а также гидрофобным взаимодействием. Четвертичная структура образуется при взаимодействии не­скольких глобул, например, молекула гемоглобина состоит из четырех таких субъединиц.

Утрату белковой молекулой своей структуры называют дена­турацией. Она может быть вызвана температурой, обезвожива­нием, облучением и другими факторами. Если при денатурации первичная структура не нарушается, то при восстановлении нормальных условий полностью воссоздается пространствен­ная структура белка.

Функции белка в клетке и целом организме:

структурно-строительная — входят в состав мембран и орга­ноидов клетки;

ферментативная — биологические катализаторы (ферменты) в подавляющем большинстве белки, способные ускорять скорость течения реакций в клетке в 10" раз;

•двигательная — движение внутри клетки обеспечивается белками цитоскелета, а движение большинства организмов происходит благодаря белкам актина и миозина;

•транспортная — многие вещества транспортируются при уча­стии белков-носителей: гемоглобин переносит кислород, инсулин участвует в транспорте глюкозы из крови в клетки;

защитная — антитела являются белками; белки участвуют в реакции свертывания крови;

регуляторная — многие гормоны и медиаторы имеют белко­вую природу;

энергетическая — в крайних случаях белки могут служить источником энергии: распад 1 г белков приводит к выделе­нию 17,6 кДж энергии.

Углеводы — органические соединения, в состав которых вхо­дят водород, углерод и кислород. Образуются из воды и угле­кислого газа в процессе фотосинтеза в хлоропластах зеленых растений (у бактерий в процессе бактериального фотосинтеза или хемосинтеза).

Различают моносахариды (глюкоза, фруктоза, галактоза, ри-боза, дезоксирибоза и др.), дисахариды (сахароза, мальтоза и др.) и полисахариды (крахмал, клетчатка, гликоген, хитин и др.).

Функции углеводов: энергетическая — углеводы являются основным источником энергии для большинства клеток: при распаде 1 г глюкозы выделяется 17,6 кДж энергии; структурно-строительная — углеводы входят в состав клеточ­ной стенки растений (целлюлоза), образуют внешний ске­лет насекомых (хитин), входят в состав АТФ, ДНК, РНК;

•запасающая — запасными питательными веществами служат у растений крахмал, а у животных и грибов — гликоген. Жиры и липоиды относятся к группе неполярных органиче­ских соединений, то есть являются гидрофобными веществами. Жиры — это триглицериды высших жирных кислот, липоиды — большой класс органических веществ с гидрофобными свойства­ ми (например, холестерин). К липидам относят фосфолипиды (в их молекуле один или два остатка жирных кислот замеще­ны группами, содержащими фосфор, а иногда также азот) и стероиды (в основе их структуры лежат 4 углеродных кольца).

Функции жиров:

энергетическая — при распаде 1 г жира выделяется 38,9 кДж энергии;

структурно-строительная — липиды являются основой стро­ ения всех биологических мембран;

источник эндогенной воды — при окислении 1 г жиров выг деляется 1,1 г воды;

регуляторная — являются источником для синтеза некото­ рых гормонов;

запасающая — откладываются в клетках и тканях как потен­ циальный источник энергии;

•защитная — играют термо- и гидрозащитную роль в организ­мах ряда животных.

1+2 ДНК(дезоксирибонуклеиновая кислота) — это молекула, со­стоящая из двух спирально закрученных полинуклеотидных цепей. ДНК образует правую спираль, шириной примерно 20 ангстрем, длиной несколько сотен микрон и молекуляр­ной массой 107 дальтон. Структура ДНК была расшифрована Д. Уотсоном и Ф. Криком в 1953 г. Мономером ДНК является нуклеотид, состоящий из азотистого основания (аденина (А), цитозина (Ц), тимина (Т) или гуанина (Г)), пентозы (дезокси-рибозы) и фосфата (рис. 4. 20).

Нуклеотиды соединяются в цепь за счет остатков фосфор­ной кислоты, расположенных между пентозами; в полинуклеотиде может быть до 30 000 нуклеотидов. Последовательность нуклеотидов одной цепи комплементарна, то есть соответству­ет последовательности в другой цепи. Между комплементарны­ми азотистыми основаниями образуются водородные связи: по две между А и Т и по три между Г и Ц.

ДНК содержится в основном в ядре; к внеядерным формам ДНК относятся митохондриальная и пластидная. Функции ДНК — носительство наследственной информации.

Перед делением клетки происходит удвоение ДНК для того, чтобы обеспечить нормальный набор генов в обеих образую­щихся клетках.

Удвоение ДНК получило название редупликации. При редуп­ликации водородные связи между комплементарными азоти­стыми основаниями аденином — тимином и гуанином — цитозином разрываются специальным ферментом. Нити, составляющие двойную спираль ДНК, расходятся, и к каждому нуклеотиду обе­их нитей последовательно подстраиваются комплементарные нуклеотиды. Подстраивающиеся нуклеотиды соединяются в две нити ДНК, каждая из которых представляет копию разошед­шихся нитей ДНК. Таким образом, в результате редупликации вера. Аминокислота прикрепляется к акцепторному участку т-РНК, который находится на «черешке листа». Противо­положный конец т-РНК (на «верхушке листа») называется антикодон. Этот триплет различается у различных т-РНК и определяет аминокислоту, которую переносит данная т-РНК. Существует более 20 видов т-РНК;

•иРНК - информационная, переносящая информацию о после­ довательности аминокислот с ДНК на белок;

•рРНК — рибосомалъная, входящая в состав рибосом; •митохондриальная РНК и др.

АТФ — это аденозинтрифосфорная кислота, нуклеотид, от­носящийся к группе нуклеиновых кислот. Концентрация АТФ в клетке мала (0,04%; в скелетных мышцах 0,5%). Молекула АТФ состоит из аденина, рибозы и трех остатков фосфорной кислоты. При гидролизе остатка фосфорной кислоты выделя­ется энергия: АТФ + Н2О = АДФ + Н3РО4 + 40 кДж/моль.

Связь между остатками фосфорной кислоты макроэргическая: при ее расщеплении выделяется примерно в 4 раза больше энер­гии, чем при расщеплении других связей. Энергию АТФ клетка использует в процессах биосинтеза, при движении, при произ­водстве тепла, при проведении нервных импульсов, в процессе фотосинтеза и др. АТФ служит универсальным аккумулятором энергии в живых организмах.

3. Особенности регуляции генов у эукариот: 1)нет оперонной организации генов.2) Гены, определяющие синтез ферментов рассеяны в геноме. 3)Регуляция транскрипции является комбинационной, т.е. активность каждого гена регулируется большим числом генов-регуляторов. (промотор и энхансер) 4)белки-регуляторы контролируют транскрипцию генов, кодирующих другие белки-регуляторы 5)гормоны – индукторы транскрипции 6) процесс компактизации и декомпактизации хроматина 7) обратная связь между процессингом, сплайсингом и экзон-интронной организацией генов – например изменение схемы сплайсинга при синтезе антител