Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаб1_АРМ.doc
Скачиваний:
14
Добавлен:
13.04.2015
Размер:
2.29 Mб
Скачать

ЛАБОРАТОРНАЯ РАБОТА N 1

Базовая аппаратная конфигурация. Основные принципы организации и функционирования операционной и файловых систем.

Цель работы:изучить основные устройства персонального компьютера, их назначение и основные характеристики, рассмотреть операционную и файловую системы, их структуру и функции.

Теоретические сведения

Персональный компьютер (ПК) — универсальная техническая система (класс микрокомпьютеров). Его конфигурацию можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которую считают типовой - в таком комплекте компьютер обычно поставляется. Понятие базовой конфигурации может меняться. В настоящее время в базовой конфигурации рассматривают четыре устройства: системный блок, монитор, клавиатуру, мышь.

Системный блок ПК содержит корпус и находящиеся в нем источник питания, материнскую (системную) плату с процессором и оперативной памятью, платы расширения (видеокарту, звуковую карту), различные накопители (жесткий диск, дисководы), дополнительные устройства.

Системный блок обычно имеет несколько параллельных и последовательных портов, которые используются для подключения устройств ввода и вывода, таких как клавиатура, мышь, монитор, принтер. В некоторых моделях ПК системный блок с монитором собраны в едином корпусе.

На корпусе типового блока питания компьютера, как правило, расположены один или два охлаждающих вентилятора, сетевой выключатель (или соединитель для него), переключатель напряжения сети (на 220 и 110 В), общий сетевой разъем, сетевой разъем для подключения монитора, кабели питания с разъемами для системной платы и накопителей. На некоторых блоках питания имеется также внешний патрон для плавкого предохранителя. Для подключения к системной плате обычно используются два шестиконтактных разъема (реже один общий). Для питания накопителей предназначены четырехконтактные разъемы. Данные разъемы отличаются по размеру: large style и small style. Если разъемов не хватает, можно использовать специальные Y-разветвители.

С помощью кабелей практически все устройства в компьютере подсоединяются к системному блоку, а сам системный блок - к розетке электропитания. Любой кабель включает в себя соединители (разъемы), находящиеся на концах кабеля, и изолированные друг от друга проводники, тем или иным образом соединяющие эти разъемы. Провода могут быть заключены в металлическую оболочку (экран), а кабель может быть покрыт пластиковой защитной оболочкой. Все кабели можно разделить на две большие группы: сигнальные кабели, предназначенные в основном для передачи информационных сигналов, и кабели питания (power cord), обеспечивающие только электропитание соответствующего устройства.

Главным узлом, определяющим возможности компьютера, является системная, или материнская (от англ. motherboard) плата:

Материнская плата Gigabyte GA-K8NE (S478, i865PE (800MHz), ATX, SATA_PATA, LAN+RAID)

Материнская плата — основная плата персонального компьютера. На ней размещаются:

процессор — основная микросхема, выполняющая большинство математических и логических операций;

микропроцессорный комплект (чипсет) — набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы;

шины — наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

оперативная память (оперативное запоминающее устройство, ОЗУ) — набор микросхем, предназначенных для временного хранения данных, когда компьютер включен;

ПЗУ (постоянное запоминающее устройство) — микросхема, предназначенная для длительного хранения данных, в том числе и когда компьютер выключен;

• разъемы для подключения дополнительных устройств (слоты).

Процессор

Процессор - это главная микросхема компьютера. Он разрешает выполнять программный код, находящийся в памяти и руководит работой всех устройств компьютера. Скорость его работы определяет быстродействие компьютера. Конструктивно, процессор - это кристалл кремния очень маленьких размеров. Процессор имеет специальные ячейки, которые называются регистрами. Именно в регистрах помещаются команды, которые выполняются процессором, а также данные, которыми оперируют команды. Работа процессора состоит в выборе из памяти в определенной последовательности команд и данных и их выполнении. На этом и базируется выполнение программ. Часто ПК оснащен дополнительными сопроцессорами, ориентированными на эффективное выполнение специфических функций: математический сопроцессор для обработки числовых данных в формате с плавающей точкой, графический сопроцессор для обработки графических изображений, сопроцессор ввода/вывода для выполнения операции взаимодействия с периферийными устройствами.

Основными параметрами процессоров являются:

- тактовая частота,

- разрядность,

- рабочее напряжение,

- коэффициент внутреннего умножения тактовой частоты,

- размер кеш памяти.

Тактовая частота определяет количество элементарных операций (тактов), выполняемые процессором за единицу времени. Тактовая частота современных процессоров измеряется в ГГц. Чем больше тактовая частота, тем больше команд может выполнить процессор, и тем больше его производительность. Первые процессоры, которые использовались в ПК работали на частоте 4,77 МГц, сегодня рабочие частоты современных процессоров достигают отметки в 4 ГГц (1 ГГц = 103 МГц).

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один такт. Разрядность процессора определяется разрядностью командной шины, то есть количеством проводников в шине, по которой передаются команды. Современные процессоры семейства Intel являются 32-разрядными.

Рабочее напряжение процессора обеспечивается материнской платой, поэтому разным маркам процессоров отвечают разные материнские платы. Рабочее напряжение процессоров не превышает 3 В. Снижение рабочего напряжения разрешает уменьшить размеры процессоров, а также уменьшить тепловыделение в процессоре, что разрешает увеличить его производительность без угрозы перегрева.

Коэффициент внутреннего умножения тактовой частоты - это коэффициент, на который следует умножить тактовую частоту материнской платы, для достижения частоты процессора. Тактовые сигналы процессор получает от материнской платы, которая из чисто физических причин не может работать на таких высоких частотах, как процессор. На сегодня тактовая частота материнских плат составляет 100-133 МГц. Для получения более высоких частот в процессоре происходит внутреннее умножение на коэффициент 4, 4.5, 5 и больше.

Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем большая вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.

Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате и имеет объем один и больше Мбайт).

В процессе работы процессор обрабатывает данные, находящиеся в его регистрах, оперативной памяти и внешних портах процессора. Часть данных интерпретируется как собственно данные, часть данных - как адресные данные, а часть - как команды. Совокупность разнообразных команд, которые может выполнить процессор над данными, образовывает систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах и тем дольше средняя продолжительность выполнения команд.

В компьютерах IBM PC используют процессоры, разработанные фирмой Intel, или совместимые с ними процессоры других фирм, относящиеся к семейству x86. Родоначальником этого семейства был 16-разрядный процессор Intel 8086. В дальнейшем выпускались процессоры Intel 80286, Intel 80386, Intel 80486 с модификациями, разные модели Intel Pentium, Pentium MMX, Pentium Pro, Pentium II, Celeron, Pentium III. Новейшей моделью фирмы Intel является процессор Pentium IV. Среди других фирм-производителей процессоров следует отметить AMD с моделями AMD-K6, Athlon, Duron и Cyrix.

Оперативная память RAM (Random Access Memory)

Память RAM - это массив кристаллических ячеек, способных сохранять данные. Она используется для оперативного обмена информацией (командами и данными) между процессором, внешней памятью и периферийными системами. Из нее процессор берет программы и данные для обработки, в нее записываются полученные результаты. Название "оперативная" происходит от того, что она работает очень быстро и процессору не нужно ждать при считывании данных из памяти или записи. Однако, данные сохраняются лишь временно при включенном компьютере, иначе они исчезают.

По физическому принципу действия различают динамическую память DRAM и статическую память SRAM. Ячейки динамической памяти можно представить в виде микроконденсаторов, способных накапливать электрический заряд. Недостатки памяти DRAM: медленнее происходит запись и чтение данных, требует постоянной подзарядки. Преимущества: простота реализации и низкая стоимость.

Ячейки статической памяти можно представить как электронные микроэлементы - триггеры, состоящие из транзисторов. В триггере сохраняется не заряд, а состояние (включенный/выключенный). Преимущества памяти SRAM: значительно большее быстродействие. Недостатки: технологически более сложный процесс изготовления, и соответственно, большая стоимость. Микросхемы динамической памяти используются как основная оперативная память, а микросхемы статической - для кэш-памяти.

Каждая ячейка памяти имеет свой адрес, выраженный числом. В современных ПК на базе процессоров Intel Pentuim используется 32-разрядная адресация. Это означает, что всего независимых адресов есть 232, то есть возможное адресное пространство составляет 4,3 Гбайт. Однако, это еще не означает, что именно столько оперативной памяти может быть в системе. Предельный размер объема памяти определяется чипсетом материнской платы и обычно составляет несколько сотен мегабайт.

Оперативная память в компьютере размещена на стандартных панельках, которые называются модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Конструктивно модули памяти имеют два выполнения - однорядные (SIMM - модули) и двурядные (DIMM - модули). На компьютерах с процессорами Pentium однорядные модули можно применять лишь парами (количество разъемов для их установления на материнской плате всегда четное). DIMM - модули можно устанавливать по одному. Комбинировать на одной плате разные модули нельзя.

Основные характеристики модулей оперативной памяти:

- объем памяти,

- время доступа.

SIMM - модули имеют объем 4, 8, 16, 32, 64 мегабайт; DIMM - модули -128, 256, 512 Мбайт. и более. Время доступа показывает, сколько времени необходимо для обращения к ячейкам памяти, чем меньше, тем лучше. Измеряется в наносекундах. SIMM - модули - 50-70 нс, DIMM - модули - 7-10 нс.

Постоянная память ROM (Read Only Memory)

В момент включения компьютера в его оперативной памяти отсутствуют любые данные, поскольку оперативная память не может сохранять данные при отключенном компьютере. Но процессору необходимы команды, в том числе и сразу после включения. Поэтому процесор обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес указывает на память, которую принято называть постоянной памятью ROM или постоянным запоминающим устройством (ПЗУ). Микросхема ПЗУ способна продолжительное время сохранять информацию, даже при отключенном компьютере. Говорят, что программы, которые находятся в ПЗУ, "зашиты" в ней - они записываются туда на этапе изготовления микросхемы. Комплект программ, находящийся в ПЗУ образовывает базовую систему ввода/вывода BIOS (Basic Input Output System). Основное назначение этих программ состоит в том, чтобы проверить состав и трудоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками.

Энергонезависимая память CMOS

Работа таких стандартных устройств, как клавиатура, может обслуживаться программами BIOS, но такими средствами невозможно обеспечить роботу со всеми возможными устройствами (в связи с их огромным разнообразием и наличием большого количества разных параметров). Но для своей работы программы BIOS требуют всю информацию о текущей конфигурации системы. По очевидной причине эту информацию нельзя сохранять ни в оперативной памяти, ни в постоянной. Специально для этих целей на материнской плате есть микросхема энергонезависимой памяти, которая называется CMOS. От оперативной памяти она отличается тем, что ее содержимое не исчезает при отключении компьютера, а от постоянной памяти она отличается тем, что данные можно заносить туда и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы. Микросхема памяти CMOS постоянно питается от небольшой батарейки, расположенной на материнской плате. В этой памяти сохраняются данные про гибкие и жесткие диски, процессоры и т.д. Тот факт, что компьютер четко отслеживает дату и время, также связанн с тем, что эта информация постоянно хранится (и обновляется) в памяти CMOS. Таким образом, программы BIOS считывают данные о составе компьютерной системы из микросхемы CMOS, после чего они могут осуществлять обращение к жесткому диску и другим устройствам.

Для хранения программ и данных в персональных компьютерах используют различного рода накопители, общая емкость которых, как правило, в сотни раз превосходит емкость оперативной памяти. По отношению к компьютеру накопители могут быть внешними и встраиваемыми (внутренними). Внешние накопители имеют собственный корпус и источник питания, что экономит пространство внутри корпуса компьютера и уменьшает нагрузку на его блок питания. Встраиваемые накопители крепятся в специальных монтажных отсеках (drive bays), что позволяет создавать компактные системы, которые совмещают в системном блоке все необходимые устройства. Сам накопитель можно рассматривать как совокупность носителя и соответствующего привода. Различают накопители со сменными и несменными носителями. Существуют накопители на магнитной ленте и дисковые накопители с различным типом носителей. Используемые в настоящее время накопители имеют различные интерфейсы, среди которых преобладают EIDE (ATAPI) и SCSI, хотя встречаются решения на основе USB, PCMCIA, LPT, FireWire, Fibre Channel, SSA и других интерфейсов.

Жесткий диск

Принципы современной технологии изготовления жесткого диска были разработаны в 1973 американской фирмой IBM. Новое устройство, которое могло хранить до 16 килобайт информации, имело 30 цилиндров (дорожек) для записи, каждый из которых был разбит на 30 секторов. Поэтому оно получило название 30/30. Известные винтовки винчестер имеют калибр 30/30, поэтому жесткие диски тоже стали называться «винчестерами». Кроме того, разрабатывался жесткий диск в американском городе Винчестере.

Жесткий диск смонтирован на оси-шпинделе, который приводится в движение специальным двигателем. Он содержит от одного до десяти дисков (platters). Скорость вращения двигателя для обычных моделей может составлять 5400, 7200, 10000, 12000 об/мин. Сами диски представляют собой обработанные с высокой точностью керамические или алюминиевые пластины с магнитным покрытием - тонким слоем окиси железа (в более ранних моделях) или окиси хрома (в более поздних моделях). Каждый диск (platter) разбит на последовательно расположенные дорожки-секторы, соответствующие зонам остаточной намагниченности, созданной головками. Головки считывания-записи вместе с их несущей конструкцией и дисками первоначально были заключены в герметически закрытый корпус, называемый модулем данных. При установке этого модуля на дисковод он автоматически соединялся с системой, подающей очищенный воздух. В современных винчестерах пакет дисков уже постоянно крепится на дисководе, система не герметична, а принудительная вентиляция отсутствует. Важнейшей частью винчестера являются головки чтения и записи (read-write head). Как правило, они находятся на специальном позиционере (head actuator). Для перемещения позиционера используются преимущественно линейные двигатели (типа voice coil — «звуковая катушка»). В винчестерах применяется несколько типов головок: монолитные, композитные, тонкопленочные, магниторезистивные (MR, Magneto-Resistive), а также головки с усиленным магниторезистивным эффектом (GMR, Giant Magneto-Resistive).

Головки не касаются поверхностей дисков, а перемещаются над ними на расстоянии долей микрона. При высоких скоростях вращения дисков (90 об/с) в зазоре между головкой и поверхностью образуется аэродинамическая подушка, и головка парит над магнитной поверхностью на высоте, составляющей несколько тысячных долей миллиметра. При изменении силы тока, протекающего через головку, происходит изменение напряженности динамического магнитного поля в зазоре, что вызывает изменения в стационарном магнитном поле ферромагнитных частиц, образующих покрытие диска

Так осуществляется запись данных на магнитный диск.

Операция считывания происходит в обратном порядке. Намагниченные частиц покрытия, проносящиеся на высокой скорости вблизи головки, наводят в ней ЭДС самоиндукции. Электромагнитные сигналы, возникающие при этом, усиливаются и передаются на обработку.

Управление работой жесткого диска выполняет специальное аппаратно-логическое устройство — контроллер жесткого диска. В прошлом оно представляло собой отдельную дочернюю плату, которую подключали к одному из свободных слотов материнской платы. В настоящее время функции контроллеров дисков выполняют микросхемы, входящие в микропроцессорный комплект (чипсет), хотя некоторые виды высокопроизводительных контроллеров жестких дисков по-прежнему поставляются на отдельной плате.

В ходе выполнения процедуры так называемого низкоуровневого форматирования (low-level formatting) на жесткий диск записывается информация, которая определяет разметку винчестера на цилиндры и секторы. Структура формата включает в себя различную служебную информацию: байты синхронизации, идентификационные заголовки, байты контроля четности. В современных винчестерах такая информация записывается однократно при изготовлении винчестера. Повреждение этой информации при самостоятельном низкоуровневом форматировании чревато полной неработоспособностью диска и необходимостью восстановления этой информации в заводских условиях. Емкость винчестера измеряется в байтах (Гигабайтах).

Одной из основных характеристик жесткого диска является среднее время, в течение которого винчестер находит нужную информацию. Это время обычно представляет собой сумму времени, необходимого для позиционирования головок на нужную дорожку и ожидания требуемого сектора. Современные винчестеры обеспечивают доступ к информации за 8 - 10 мс.

Другой характеристикой винчестера является скорость чтения и записи, но она зависит не только от самого диска, но и его контроллера, шины, быстродействия процессора. У стандартных современных жестких дисков эта скорость составляет 15 - 17 Мбайт/с.

Принцип кэширования жесткого диска во многом похож на принцип кэширования, используемый для оперативной динамической памяти, хотя способы доступа к диску и памяти сильно различаются. Если время доступа к любой из ячеек оперативной памяти имеет примерно одинаковое для данного компьютера значение, то время доступа к различным блокам информации на винчестере в общем случае будет различным. Во-первых, нужно затратить некоторое время, чтобы магнитная головка записи-чтения подошла к искомой дорожке. Во-вторых, поскольку при движении головка вибрирует, то необходимо время, чтобы она успокоилась. В-третьих, требуется время, чтобы головка нашла искомый сектор. Методы кэширования, используемые для оперативной памяти, применяются и для кэширования информации, хранимой на жестких дисках. Поскольку винчестер является блочно-ориентированным устройством ввода-вывода, то данные передаются блоками определенной длины. Кэш-память диска заполняется не только требуемым сектором, но и секторами, непосредственно следующими за ним, так как известно, что в большинстве случаев взаимосвязанные данные хранятся в соседних секторах. Этот метод известен также как метод опережающего чтения (Read Ahead). При работе с многозадачными системами выгодно иметь винчестер с мультисегментной кэш-памятью, которая для каждой из задач отводит свою часть кэша (сегмент). В адаптивной мультисегментной кэш-памяти для повышения производительности число и размеры сегментов могут изменяться.

Дисковод оптических дисков

Оптические накопители выпускаются в нескольких модификациях:

1. Классические компакт-диски CD-ROM (Compact Disc Read-Only Memory - постоянное запоминающее устройство на основе компакт-диска).

Принцип действия этого устройства состоит в считывании числовых данных с помощью лазерного луча, отражающегося от поверхности диска. Цифровая запись на компакт-диске отличается от записи на магнитных дисках очень высокой плотностью, и стандартный компакт-диск может хранить примерно 650 - 700 Мбайт данных.

Большие объемы данных характерны для мультимедийной информации(графика, музыка, видео), поэтому дисководыCD-ROMотносят к аппаратным средствам мультимедиа. Программные продукты, распространяемые на лазерных дисках, называютмультимедиа изданиями.Сегодня мультимедийные издания завоевывают все более прочное место среди других традиционных видов изданий. Так, например, существуют книги альбомы, энциклопедии и даже периодические издания (электронные журналы), выпускаемые наCD-ROM.

Основным недостатком стандартных дисководов CD-ROMявляется невозможность записи данных, но параллельно с ними существуют и устройства однократной записиCD-R (Compact Disk Recorder),и устройства многократной записиCD-RW.

Основным параметром дисководов СD-RОМ является скорость чтения данных измеряется в кратных долях. За единицу измерения принята скорость чтения в серийных образцах, составлявшая 150 Кбайт/с. Таким образом, дисковод с удвоенной скоростью чтения обеспечивает производительность 300 Кбайт/с, с учетверенной скоростью — 600 Кбайт/с и т. д. В настоящее время наибольшее распространение имеют устройства чтенияCD-ROM спроизводительностью 48х-52х. Современные образцы устройств однократной записи имеют производительность 8х-12х, а устройств многократной записи — 4х. Основным стандартом, определяющим логический и файловый формат записи компакт-дисков, является международная спецификация ISO 9660. Основными интерфейсами приводов CD-ROM стали Enhanced IDE, UltraDMA/33 и SCSI.

Современные материнские платы поддерживают загрузку компьютера с CD-ROM, что бывает удобно при установке новой операционной системы или при проверке компьютера на наличие вирусов.

2. Цифровые универсальные диски – DVD-ROM,DVD-R/RW;BD(Blu-ray)-ROM,BD-R/RW;HDDVD-ROM,HDDVD-R/ReR.

Видеокарта (видеоадаптер)

Совместно с монитором видеокарта образует видеоподсистему персонального компьютера. Видеокарта не всегда была компонентом ПК. На заре развития персональной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные об яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора.

С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана (количества точек по вертикали и горизонтали) области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти. За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: MDA (монохромный); CGA (4 цвета); EGA (16 цветов); VGA (256 цветов). В настоящее время применяются видеоадаптеры SVGA, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640х480, 800х600,1024х768,1152х864; 1280х1024 точек и далее).

Минимальное требование по глубине цвета на сегодняшний день — 256 цветов хотя большинство программ требуют не менее 65 тыс. цветов (режим High Color). Наиболее комфортная работа достигается при глубине цвета 16,7 млн. цветов (режим True Color). Работа в полноцветном режиме True Color с высоким экранным разрешение требует значительных размеров видеопамяти. Современные видеоадаптеры способны также выполнять функции обработки изображения, снижая нагрузку на центральный процессор ценой дополнительных затрат видеопамяти.

Видеоускорение — одно из свойств видеоадаптера, которое заключается в том, что часть операций по построению изображений может происходить без выполнения математических вычислений в основном процессоре компьютера, а чисто аппаратным путем — преобразованием данных в микросхемах видеоускорителя. Видеоускорители могут входить в состав видеоадаптера (в таких случаях говорят о том, что видеокарта обладает функциями аппаратного ускорения), но могут поставляться в виде отдельной платы, устанавливаемой на материнской плате и подключаемой к видеоадаптеру.

Различают два типа видеоускорителей — ускорители плоской (2D) и трехмерной (3D) графики. Первые наиболее эффективны для работы с прикладными программами (обычно офисного применения) и оптимизированы для операционной системы Windows, а вторые ориентированы на работу мультимедийных развлекательных программ, в первую очередь компьютерных игр и профессиональных программ обработки трехмерной графики. Обычно в этих случаях используют разные математические принципы автоматизации графических операций, но существуют ускорители, обладающие функциями и двумерного, и трехмерного ускорения.

Звуковая карта

Используются для записи и воспроизведения различных звуковых сигналов: речи, музыки, шумовых эффектов. Любая современная звуковая карта может использовать несколько способов воспроизведения звука. Одним из простейших является преобразование ранее оцифрованного сигнала снова в аналоговый. Глубина оцифровки сигнала (например, 8 или 16 бит) определяет качество записи и, соответственно, воспроизведения. Так, 8-разрядное преобразование обеспечивает качество звучания кассетного магнитофона, а 16-разрядное - качество компакт-диска. Аппаратные средства, необходимые для прямой записи и воспроизведения сигнала, часто называют цифровым аудиоканалом (digital audio channel).

Другой способ воспроизведения звука заключается в его синтезе. При поступлении на синтезатор некоторой управляющей информации (упрощенно говоря - нотной последовательности) по ней формируется соответствующий выходной сигнал. В настоящее время применяются две основные формы для синтеза звукового сигнала: синтез на основе использования частотной модуляции (FM-синтез), а также синтез с применением таблицы волн (сэмплов) - так называемый табличный, или WT-синтез (WaveTable) (см. Основные параметры и функции звуковых карт). Поскольку эти виды синтеза также являются цифровыми, для них необходимо преобразование сигнала при помощи цифроаналогового преобразователя (ЦАП или DAC - Digital to Analog Converter).

Управляющие команды для синтеза звука могут поступать на звуковую карту, например, от MIDI-устройства (Musical Instruments Digital Interface). MIDI определяет протокол передачи команд по стандартному интерфейсу.

Сетевой адаптер(NIC)

Устройство для подключения компьютера к сетевому кабелю. Он, как и любая плата расширения, рассчитан на определенный тип системной (или локальной) шины компьютера. (32-разрядные разъемы PCI). На крепежной панели сетевого адаптера может находиться до трех типов разъемов: RJ-45, BNC и AUХ. Однако даже универсальная плата (со всеми тремя разъемами) одновременно может подключаться только к одной кабельной

системе.

Для разделения системных ресурсов компьютера (портов ввода-вывода, прерываний, каналов прямого доступа к памяти) платы сетевых адаптеров могут иметь набор специальных перемычек (jumpers). Современные NIC позволяют модифицировать системные ресурсы программным способом (без перемычек), и даже автоматически, если компьютер отвечает требованиям Plug and Play. Для портативных компьютеров используются сетевые карты, выполненные в стандарте PCMCIA (PC Cards) или как внешние устройства (pocket-адаптеры), которые подключаются к стандартному параллельному порту.

Существуют также сетевые адаптеры для периферийных устройств. Например, плата JetDirect для лазерных принтеров Hewlett-Packard, однако ее использование предусмотрено в мощных последних моделях

Соединители(разъемы) бывают двух видов: розетки (female) и вилки (male). Контактные выводы вилок выполнены обычно в виде штырьков, которые при соединении с однотипным разъемом (но уже розеткой) входят в соответствующие пазы ответных контактов. Контакты и в розетке, и в вилке могут быть также выполнены в виде плоских пружинных пластин. Большинство используемых разъемов сконструированы так, чтобы исключить возможность неправильного подключения. В тех случаях, когда возможны несколько вариантов подключения, контакты на разъемах обычно пронумерованы и подписаны. В плоских шлейфах провод, ведущий к обозначенному первым номером контакту, обычно выделен другим цветом (характерно для шлейфов IDE, FDD, SCSI).

Операционная система

(ОС) берет на себя все функции, связанные с обработкой прерываний, управлением таймерами и оперативной памятью, а также другие низкоуровневые проблемы, то есть является системой управления ресурсами ЭВМ.

Операционные системы могут различаться особенностями реализации внутренних алгоритмов управления основными ресурсами компьютера, особенностями использованных методов проектирования, типами аппаратных платформ, областями использования и многими другими свойствами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]