Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Законы сохранения в современной физике.docx
Скачиваний:
11
Добавлен:
14.04.2015
Размер:
31.77 Кб
Скачать

Законы сохранения в современной физике

Оглавление

Введение 3

Закон сохранения и превращение энергии 4

Закон сохранения импульса и момента импульса 7

Закон сохранения электрического заряда 8

Закон сохранения массы 10

Заключение 12

Список литературы 13

Введение

Законы сохранения - фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

Некоторые из законов сохранения выполняются всегда и при всех условиях (например, законы сохранения энергии, импульса, момента импульса, электрического заряда), или, во всяком случае, никогда не наблюдались процессы, противоречащие этим законам. Другие законы являются лишь приближёнными и выполняющимися при определённых условиях (например, закон сохранения массы выполняется в нерелятивистском приближении; закон сохранения чётности выполняется для сильного и электромагнитного взаимодействия, но нарушается в слабом взаимодействии).

Цель работы на основе анализа специальной литературы по данному вопросу охарактеризовать законы сохранения в классической физике и отметить особенности, уточнения, которые эти законы принимают в современной физике.

Закон сохранения и превращение энергии

Первое начало термодинамики известно как закон сохранения энергии. Это фундаментальный закон, согласно которому важнейшая физическая величина - энергия - сохраняется неизменной в изолированной системе.1

Важным достижением на пути процесса интеграции знаний было открытие фундаментального закона природы - закона сохранения и превращения энергии. Открытие закона сохранения и превращения энергии связывают с именами Р. Майера, Д. Джоуля, Г. Гельмгольца, которые пришли к нему разными путями. Формулировка закона сохранения и превращения энергии, согласно Г. Гельмгольцу: приращение кинетической энергии тела равно убыли его потенциальной энергии. Г. Гельмгольц выразил полученный закон в математической форме и связал закон сохранения энергии с принципом невозможности создания вечного двигателя. Д. Джоуль определил величину эквивалента перевода механической энергии в тепловую. Рассматривая различные виды энергии, Р. Майер в своей работе, выделил: кинетическую, потенциальную, их сумму - механическую энергию, тепловую, электрическую и химическую энергии, пришел к выводу, что все эти виды энергии могут взаимопревращаться - при условии неизменности общего количества энергии. Например, количественным выражением закона сохранения энергии в химическом производстве является тепловой (энергетический) баланс. Применительно к тепловым процессам химической переработки закон сохранения энергии формулируется так: количество тепловой энергии, принесенной в зону взаимодействия веществ, равно количеству энергии вынесенной веществами из этой зоны:

Qф + Qэ + Qв = Оф' + Qn'

где Qф - теплота, введенная в процесс с исходными веществами; Qэ - теплота экзотермических реакций; Qв - теплота, введенная в процесс извне; Оф' - теплота, выведенная из процесса с продуктами реакции; Qn' - потери теплоты в окружающую среду.

Переход энергии из одной формы в другую означает, что энергия в данной ее форме исчезает, превращается в энергию в иной форме. Закон сохранения энергии утверждает, что при любых процессах, происходящих в изолированной системе, полная энергия системы не изменяется, то есть переход энергии из одной формы в другую происходит с соблюдением количественной эквивалентности. Для количественной характеристики различных форм движения вводятся соответствующие им виды энергии: механическая, внутренняя (тепловая), электромагнитная, химическая, ядерная и т. д.

В современной классической физике закон сохранения энергии имеет форму записи в виде обобщенного уравнения состояния замкнутой термодинамической системы:

W = Wk + Wp + U,

где W – полная энергия системы; Wk − кинетическая энергия системы в целом; Wp − потенциальная энергия системы в целом; U – внутренняя энергия системы.

Данное уравнение указывает на то, что энергия внутри системы может переходить из одного вида энергии в другой (из кинетической энергии в потенциальную) и, наоборот, при неизменности внутренней энергии. Такая форма записи закона сохранения энергии не учитывает возможности перехода энергии из одной формы в другую, то есть не учитывает классификацию энергии по формам и видам. Недостатком формы записи является ее приемлемость лишь для замкнутой системы.

Закон сохранения энергии можно распространить на незамкнутые системы, если принять во внимание принцип приращений. Этот принцип требует записывать определяющие уравнения, к которым относится и уравнение состояния, не в абсолютных значениях величин, а в их приращениях.

Для полного учета всех форм энергии в уравнение состояния должна быть добавлена сумма приращений энергии, вызванных изменением состояния системы под влиянием разных форм физического поля. Уравнение состояния принимает обобщенный вид:

dW = Σi Ui dqi + Σj Uj dqj,

где i – число форм движения; j – число форм физического поля.

Это уравнение состояния является наиболее полной формой записи по сравнению с другими формами записи этого уравнения в современной физике и отражает не только перенос энергии из системы в среду или из среды в систему, но и перенос энергии из одной формы движения в другую внутри системы, из энергии любой формы движения в энергию физического поля и наоборот. Данное уравнение положены в основу закона сохранения энергии. Полное название этого закона - закон сохранения и превращения энергии.1

Закон сохранения энергии - закон, управляющий всеми явлениями природы; исключений из него науке неизвестно. Закон сохранения энергии имеет большое практическое значение, поскольку существенно ограничивает число возможных каналов эволюции системы без ее детального анализа. Так на основании этого закона оказывается возможным априорно отвергнуть любой весьма проект весьма экономически привлекательного вечного двигателя первого рода (устройства, способного совершать работу, превосходящую необходимые для его функционирования затраты энергии).

Таким образом, закон сохранения энергии действует во всех случаях и повсюду, где одна форма энергии переходит в другую.2