Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гидро и пневмопривод Комплект / Насосы гидропривод / лекции ОГИТ / Лекция №14 Теория подобия в гидравлике.doc
Скачиваний:
315
Добавлен:
25.04.2015
Размер:
107.52 Кб
Скачать

Критерий подобия Эйлера

Вначале рассмотрим наиболее простой случай - напорное движение идеальной жидкости, т. е. такое движение, при котором отсутствуют силы вязкости. Для этого случая уравнение Бернулли для сечений 1-1 и 2-2 будет иметь вид:

.

Из условия неразрывности потока расходы в сечениях 1-1 и 2-2 с площадями соответственно иодинаковы, а это значит, что

,

откуда

.

Подставив последнее соотношение в уравнение Бернулли, после переноса членов получим:

.

После очевидных преобразований и сокращений придём к виду

.

Если два потока геометрически подобны, то правая часть уравнения имеет одно и то же значение, следовательно, левая часть тоже одинакова, т.е. разности давлений в сечениях 1-1 и 2-2 пропорциональны динамическим давлениям:

.

Таким образом, при напорном движении идеальной несжимаемой жидкости для обеспечения гидродинамического подобия достаточно одного геометрического подобия. Безразмерная величина, представляющая собой отношение разности давлений к динамическому давлению (или разности пьезометрических высот к скоростной высоте), называется коэффициентом давления или числом Эйлера и обозначается Eu.

В случае напорного движения в приведённых уравнениях под можно понимать полное давление (на жидкость действует также сила тяжести, но в напорных потоках ее действие проявляется через давление, т. е. оно сводится лишь к соответствующему изменению давления за счёт глубины потока), т.к. при высоких давлениях величина давления, зависящая от глубины потока, несоизмеримо мала, и величина гидростатического напора практически полностью определяется избыточным давлением. Следовательно, для Eu можно записать:

,

где - разность статических напоров.

Критерий подобия Рейнольдса

Посмотрим, какому условию должны удовлетворять те же геометрически и кинематически подобные потоки для того, чтобы было обеспечено их гидродинамическое подобие при наличии сил вязкости, а, следовательно, и потерь энергии, т.е. при каком условии числа Eu будут одинаковыми для этих потоков.

Уравнение Бернулли для этого случая примет вид:

,

или по аналогии с предыдущими рассуждениями, учтя, что , можно написать

Как видно из последнего уравнения, числа Eu будут иметь одинаковые значения для рассматриваемых потоков, а сами потоки будут подобны друг другу гидродинамически при условии равенства коэффициентов сопротивления (равенство коэффициентов идля сходственных сечений двух потоков следует из их кинематического подобия). Таким образом, коэффициенты сопротивленийв подобных потоках должны быть одинаковыми, а это значит, что потери напора для сходственных участков пропорциональны скоростным напорам.

.

Рассмотрим очень важный в гидравлике случай движения жидкости - движение с трением в цилиндрической трубе, для которого коэффициент трения можно описать формулой

.

Для геометрически подобных потоков отношение одинаково, следовательно, условием гидродинамического подобия в данном случае является одинаковое значение для этих потоков коэффициента. Он выражается через напряжение тренияна стенке и динамическое давление, как было установлено ранее, следующим образом:

.

Следовательно, для двух подобных потоков I и II можно записать

,

т. е. напряжения трения пропорциональны динамическим давлениям.

Учитывая закон трения Ньютона и тот факт, что в последних уравнениях , предыдущие отношения, равныеk, можно выразить

где индекс у = 0 означает, что производная взята при у = 0, т. е. у стенки трубы. При этом заметим, что закон трения Ньютона применим лишь при ламинарном течении. Однако, как было показано выше, при турбулентном течении в трубах вблизи стенок образуется тонкий ламинарный слой, внутри которого справедлив закон трения Ньютона. Поэтому напряжение трения на стенке может определяться по этому закону также и при турбулентном течении.

После умножения и деления на диаметр трубы d и перегруппировки множителей получим:

.

Здесь буквой С обозначено выражение в квадратных скобках, представляющее собой безразмерный градиент скорости вблизи стенки.

Для кинематически подобных потоков величина C одинакова, поэтому после сокращения на С условие динамического подобия потоков перепишем в виде

.

или, переходя к обратным величинам

.

В этом заключается критерий подобия Рейнольдса, который можно сформулировать следующим образом: для гидродинамического подобия геометрически и кинематически подобных потоков с учетом сил вязкости требуется равенство чисел Рейнольдса, подсчитанных для любой пары сходственных сечений этих потоков.