Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика / Физика_Оптика (лабораторный практикум).doc
Скачиваний:
86
Добавлен:
27.04.2015
Размер:
1.7 Mб
Скачать

Дифракционная решетка

Дифракционная решетка представляет собой систему большого числа одинаковых по ширине и параллельных друг другу щелей, лежащих в одной плоскости и разделенных непрозрачными промежутками, равными по ширине. Дифракционная решетка изготавливается путем нанесения параллельных штрихов на поверхность стекла. Число штрихов на 1 мм определяется областью спектра исследуемого излучения и изменяется от 300 мм-1 в инфракрасной области до 1200 мм-1 в ультрафиолетовой.

Пусть решетка состоит из N парал­лель­ных щелей с шириной каждой щели a и расстоянием между соседними ще­ля­ми b (рис. 4.7). Сумма a + b = d на­зы­­­ва­ет­ся периодом или постоянной ди­фра­к­ци­он­ной решетки. Пусть на решетку нор­мально па­дает плоская моно­хро­ма­ти­ческая вол­на. Требуется исследовать ин­тенсив­ность света, распро­стра­ня­ю­ще­­­гося в направле­нии, со­ста­вля­ю­щем угол с нор­малью к плоскости ре­шетки. Кроме рас­пределе­ния ин­тен­сив­ности из-за ди­ф­ра­кции на каждой ще­ли, имеет мес­то перерас­пре­деление световой энер­гии за счет интерференции волн от N щелей когерентных источников. При этом минимумы будут находиться на прежних местах, ибо условие минимума дифракции для всех щелей (рис. 4.8) одинаково. Эти минимумы называются главными. Условие главных минимумов a sin = k совпадает с условием (4.8). Положение главных минимумов sin = a, 2 /a,... показано на рис. 4.8.

Однако в случае многих щелей к главным минимумам, создаваемым каждой щелью в отдельности, добавляются минимумы, возникающие в результате интерференции света, прошедшего через различные щели. На рис. 4.8 для примера показано распределение интенсивности и расположение максимумов и минимумов в случае двух щелей с периодом d и шириной щели a.

В одном и том же направлении все щели излучают энергию колебаний одинаковой амплитуды. И результат интерференции зависит от разности фаз колебаний, исходящих от сходственных точек соседних щелей (например, C и E, B и F), или от оптической разности хода ED от сходственных точек двух соседних щелей до точки C. Для всех сходственных точек эта разность хода одинакова. Если ED = k или, так как ED = d sin ,

d sin = k, k = 0,1,2..., (4.9)

колебания соседних щелей взаимно усиливают друг друга, и в точке C фокальной плоскости линзы наблюдается максимум дифракции. Амплитуда суммарного колебания в этих точках экрана максимальна:

Amax = N A , (4.10)

где A - амплитуда колебания, посылаемого одной щелью под углом . Интенсивность света

Jmax = N2A2 = N2J . (4.11)

Поэтому формула (4.9) определяет положение главных максимумов интенсивности. Число k дает порядок главного максимума.

Положение главных максимумов (4.9) определяется соотношением

. (4.12)

Максимум нулевого порядка один и расположен в точке C0, максимумов первого, второго и т.д. порядков по два и расположены они симметрично относительно C0, на что указывает знак +. На рис. 4.8 показано положение главных максимумов.

Кроме главных максимумов, имеется большое число более слабых побочных максимумов, разделенных добавочными минимумами. Побочные максимумы значительно слабее главных. Расчет показывает, что интенсивность побочных максимумов не превышает 1/23 интенсивности ближайшего главного максимума.

В главных максимумах амплитуда в N раз, а интенсивность в N2 раз больше амплитуды, даваемой в соответствующем месте одной щелью. Четко локализованные в пространстве линии с увеличенной яркостью легко обнаруживаются и могут быть использованы в целях спектроскопических исследований.

По мере удаления от центра экрана интенсивность дифракционных максимумов убывает (увеличивается расстояние от источников). Поэтому не удается наблюдать все возможные дифракционные максимумы. Заметим, что количество дифракционных максимумов, даваемых решеткой по одну сторону экрана, определяется условием sin 1 ( = - максимальный угол дифракции), откуда с учетом (4.9)

. (4.13)

При этом не следует забывать, что k - целое число.

Положение главных максимумов зависит от длины волны . Поэтому при освещении дифракционной решетки белым светом все максимумы, кроме центрального (k = 0), разложатся в спектр, обращенный фиолетовым концом к центру дифракционной картины. Таким образом, дифракционная решетка может служить для исследования спектрального состава света, т.е. для определения частот (или длин волн) и интенсивности всех его монохроматических компонент. Применяемые для этого приборы называются дифракционными спектрографами, если исследуемый спектр регистрируется с помощью фотопластинки, и дифракционными спектроскопами, если спектр наблюдается визуально.