Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы неорганической химии - учебное пособие.doc
Скачиваний:
614
Добавлен:
30.04.2015
Размер:
3.99 Mб
Скачать

Глава 8. Окислительно-восстановительные процессы

Окислительно-восстановительными называют реакции, сопровождающиеся изменением степени окисления атомов, входящих в состав реагирующих веществ1.

Рис.23. Изменение кова-лентности и электрова-лентности центрального атома идеализированной молекулы состава ЭХ4 в зависимости от ионности химической связи; атом Х одновалентный атом, типа Н, F и т.п.

8.1 Степень окисления элементов

В простых веществах химическая связь - ковалентная неполярная. В двухцентровой двухэлектронной связи связывающая электронная пара симметрична и сосредоточена посредине межатомного расстояния. Оба взаимодействующих атома проявляют ковалентность, равную сумме порядков всех связей данного атома с другими атомами молекулы. Взаимодействующие атомы не имеют эффективных зарядов, связь неполярна, электровалентности атомов равны нулю. Если химическая связь

образована двумя атомами с

близкими электроотрицатель-

ностями, то также образуется

ковалентная связь. Ковалентность

также равна порядку связи, относящемуся к той его доле, которая соответствует не­полярной ковалентной связи. Однако часть электронной плотности химической связи в некоторой мере смещена к более электроотрицательному атому. На этом атоме появляется эффективный отрицательный заряд, а на менее электроотрицательном - эффективный, положительный заряд атома. Величина заряда есть электровалентность атома. Значит, при повышении полярности атома убывает, а электровалентность – возрастает. В предельном случае полярной связи ионной — связывающая электронная плотность полностью смещена к более электроотри-цательномуатому. Эффективные заряды на взаимодей-ствующих атомах приобретают мак симальные по модулю значения, а ковалентная составляющая связи отсутствует. Таким образом, в ионной связи ковалентность взаимодействующих атомов равна нулю, а электрова-лентность достигает экстремальных значений (рис. 23).

Рис.23 построен на основании того, что ковалентность атома определяется неполярной составляющей химической связи, а электровалентность - эффективными зарядами атомов. Из рис.23 также видно, что, хотя ковалентность и электровалентности атомов изменяются различным образом, сумма ковалентности и модуля электровалентности, т. е. валентность атома остается постоянной.

Для уравнивания и определения вида возможных продуктов многих химиче­ских реакций существует специальный метод, основанный на понятии степени окисления. Для примера рассмотрим несколько соединений (табл. 20).

Из таблицы 20 видно, что по мере увеличения ионности связи уменьшается доля ковалентности атома и увеличивается доля электровалентности атома при постоянстве его общей валентности. В последнем столбце табл. 20 приведены значения валентности атома со знаком его электровалентности. Соответствующая вели­чина называется степенью окисления.

20. Валентности и степени окисления атомов в некоторых соединениях

Моле-кула

Ион-ность связи, %

Атом

Кова-лент-ность

Электро-валент-ность

Валент-ность:

v = ve+|ve|

Степень окисле-ния

С (алмаз)

0

4

0

4

0

0

SiH4

1,8

Si

H

3,93

0,98

+0,07

-0,02

4

1

+4

-1

CH4

3,1

C

H

3,87

0,97

-0,13

+0,03

4

1

-4

+1

CO2

15

C

O

3,40

1,70

+0,60

-0,30

4

2

+4

-2

SiF4

59

Si

F

1,64

0,41

+2,36

-0,59

4

1

+4

-1

H2S

3,1

S

H

1,94

0,97

-0,06

+0,03

2

1

-2

+1

SO3

15

S

O

5,10

1,70

+0,90

-0,30

6

2

+6

-2

MgCl2

51

Mg

Cl

0,98

0,49

+1,02

-0,51

2

1

+2

-1

CsF

89

Cs

F

0,11

0,11

+0,89

-0,89

1

1

+1

-1

HONO2

H – O

(H)O – N

N = O

H

O

O

N

0,71

1,66

1,90

3,80

+0,29

-0,34

-0,10

+1,20

1

2

2

5

+1

-2

-2

+5

Атом азота имеет всего четыре валентных орбитали, поэтому максимальная для него ковалентность равна четырем и, казалось бы, не может быть степени окисления равной пяти. Однако хорошо известно, что в молекуле азотной кислоты, ее производных и в ряде других соединений азот имеет степень окисления +5. В табл. 20 также приводится значение валентности азота, равное пяти. Поясним, его происхождение.

Три электрона азота образуют три σ -связи с соседними атомами кислорода и еще два - делокализованную трехцентровую π -связь с атомами кислорода, не связанными с атомом водорода. Расщепление МО – трех центровой связи показано на рис. 25. Для трехцентровых МО харак­терно такое расщепление, когда одна орбиталь становится связывающей, другая – несвязывающей, а третья - разрыхляющей. Определение порядка связи как полусуммы связывающих и разрыхляющих электронов в молекуле справедливо только для двухцентровых связей. Для многоцентровых и, в частности, для трехцентровой π - связи в молекуле азотной кислоты требуется другое, более строгое определение порядка свя­зи. Связывающая π -МО дает вклад в порядок связи равный 1. В итоге ковалентность азота равна 4 (три σ - и одна π - связь). Рассмотрим вклад несвязывающей π -МО. Вид данной МО таков, что электроны, описываемые ею, находятся практически только на атомах кислорода О(2) и О(з). При этом на атомах кислорода возникают избыточные отрицательные заряды (-0,5), а на атоме азота - избыточный положительный (+1,0). Значит вклад данной МО в ковалентность атома равен нулю, а вклад в электровалент­ность азота равен +1. В итоге сумма ковалентности и электровалентности азота, т. е. его валентность равна 5, а степень окисления - (+5).

Таким образом, степень окисления характеризует валентность и электроотри­цательность атома элемента в составе молекулы. Если бы связи в молекуле были абсолютно ионными, то степень окисления равнялась бы электровалентностям атомов.

Введено понятие степени окисления для характеристики состояния элементов в соединениях. Под степенью окисления (С.О.) понимается условный заряд атома в соединении, вычисленный, исходя из предположения, что соединение состоит из ионов. Определение степени окисления проводят, используя следующие правила:

1. Степень окисления элемента в простом веществе, например, в металле или в Н2, N2, О3 равна нулю.

2. Степень окисления элемента в виде одноатомного иона в соединении, имеющем ионное строение, равна заряду данного иона, например:

+1 -1 +2 -1 +3 -1 +4 -1

Na I, MgC12, A1F3, ZrBr4.

3. В соединениях с ковалентными полярными связями отрицательный заряд относят к более электроотрицательному элементу, причем, принимают следующие степени окисления:

а) для фтора (ЭО-4) С.О. = -1;

б) для кислорода (ЭО = 3,5) С.О. = -2, за исключением пероксидов, где С.О. = -1, надпероксидов (С.О. = -1/2), озонидов (С.О. = -1/3) и OF2 (С.О. = +2);

в) для водорода (ЭО = 2,0) С.О. = +1, за исключением солеобразных гидридов, например LiH, где С.О. = -1;

г) для щелочных и щелочно-земельных металлов (ЭО = 0,7-1,0) С.О. = +1 и +2 соответственно,

4. Алгебраическая сумма С.О. элементов в нейтральной молекуле равна нулю, в сложном ионе — заряду иона.

Понятие С.О. для большинства соединений имеет условный характер, так как не отражает реальный эффективный заряд атома. Од­нако это понятие весьма широко используется в химии.

Большинство элементов могут проявлять перемен-ную С.О. в соединениях (рис.24). В качестве примера рассчитаем С.О. азота в соединениях КNО2 и HNO3. Степень окисления водорода и щелочных металлов в соединениях равна +1, а С.О. кислорода -2. Соответственно С.О. азота равна

KNО2 1+х + 2(-2) = 0→х = +3 ,

HNO3 1 +х + 3(-2) = 0→х = +5.

Аналогичным способом можно определить степень окисления элементов в любых соединениях. Для примера приведем соединения азота с разными степенями его окисления:

-3 +1 -2 +1 -1+1 -2+1 0 +2-2 +1 +3-2 +4-2 +1+5-2

NH3, N2H4, NH2OH, N2, NO, NaNO2, NO2, KNO3

Как видно из рис.24, максимальная, а для неметаллов и минимальная степени окисления имеют периодическую зависимость от порядкового номера в периодической системе элементов, что обу­словлено электронным строением атомов.

Степень окисления является формализованным отображениемобщей валентности элемента в соединении, определяемой суммой его ковалентности и электровалентности.

С

Рис.24. Наиболее распространенные степени окисления первых 35 элементов. Линиями соеденены высшие степени окисления

тепени окисления можно рассчитать квантовохимически на основании рассмотрения распре-деления электронной плотности в молекуле. Однако гораздо раньше для расчета степеней окисления элемента в его соединениях выработаны простые и удобные эмпирические правила, не требующие

трудоемких квантово-

химических расчетов. В

краткой форме они приведены были выше. Рассмотрим их подробнее.

В простых веществах степень окисления, элемента всегда равна нулю. Нуле­вые значения степени окисления имеют, например, атомы в молекулах водорода (Н2), кислорода (О2), серы (S3, S4, S6, S8, ... Sn где n обычно принимает значения порядка постоянной Авогадро), в чистых металлах (Me) и др.

В простых веществах только благородных газов, представляющих собой одноатомные молекулы при н.у., валентность элемента равна нулю. Атомы остальных элементов проявляют ненулевую валентность например, валентность углерода в алмазе равна четырем. Однако степень окисления углерода при этом принимается равной нулю, так как нет преимущественных смещений электронной плотности между эквивалентными атомами углерода и, следовательно, нет оснований представить вещество алмаз, состоящим из ионов С4+ и С4–. Поэтому степень окисления является лишь отображением валентности, но не совпадает с ней.

В сложных соединениях некоторые элементы проявляют всегда одну и ту же степень окисления, но для большинства элементов она может принимать не­сколько значений1.