Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции 1-2.docx
Скачиваний:
15
Добавлен:
02.05.2015
Размер:
999.86 Кб
Скачать

Структура компьютера и принципы его функционирования.

В 1946 - 1948 годах в Принстонском университете (США) коллективом исследователей под руководством Джона фон Неймана был разработан проект ЭВМ, который никогда не был реализован, но идеи которого используются и по сей день. Этот проект получил название машины фон Неймана или Принстонской машины. Структура Принстонской машины представленв ниже

Несмотря на огромное разнообразие вычислительной техники и ее необычайно быстрое совершенствование, фундаментальные принципы устройства машин во многом остаются неизменными. В частности, начиная с самых первых поколений, любая ЭВМ состоит из следующих основных устройств: процессор, память (внутренняя и внешняя) и устройства ввода- вывода информации. Процессор является главным устройством компьютера, в котором собственно и происходит обработка всех видов информации. Другой важной функцией процессора является обеспечение согласованного действия всех узлов, входящих в состав компьютера. Соответственно наиболее важными частями процессора являются арифметико-логическое устройство АЛУ и устройство управления.

Упрощенную схему ПК представить можно следующим образом:

Регистры процессора используются для оперативного хранения обрабатываемых данных и некоторой служебной информации, в нем сознательно не предусмотрено место для хранения программы. Для этой важной цели в компьютере служит другое устройство - память

другой подход. Система памяти конструируется в виде иерархии слоев:

Оперативная память

  • Оперативная память, или оперативка – это один из главных элементов компьютера. «Оперативная» память потому, что очень быстро работает и позволяет процессору практически без какого-либо заметного ожидания читать информацию из памяти. Содержащиеся в оперативной памяти данные сохранены и доступны только тогда, когда компьютер включен. При выключении компьютера содержимое стирается из оперативной памяти, поэтому перед выключением компа все данные нужно сохранить. От объема оперативной памяти (кстати, еще ее называют ОЗУ – оперативное запоминающее устройство) зависит количество задач, которые одновременно может выполнять компьютер.

  • Устройства оперативной памяти иногда называют запоминающими устройствами с произвольным доступом. Это означает, что обращение к данным, хранящимся в оперативной памяти, не зависит от порядка их расположения в ней. Когда говорят о памяти компьютера, обычно подразумевают оперативную память, прежде всего микросхемы памяти или модули, в которых хранятся активные программы и данные, используемые процессором. Под компьютерной памятью обычно подразумевается ОЗУ (RAM), т.е. физическая память системы, которая состоит из микросхем или модулей памяти, используемых процессором для хранения основных, запущенных в текущий момент времени программ и данных. При этом термин "хранилище данных" относится не к оперативной памяти, а к таким устройствам, как жесткие диски и накопители на магнитной ленте (которые, тем не менее, можно использовать как разновидность RAM, получившую название виртуальная память). Термин "оперативная память" часто обозначает не только микросхемы, которые составляют устройства памяти в системе, но включает и такие понятия, как логическое отображение и размещение. Логическое отображение - это способ представления адресов памяти на фактически установленных микросхемах. Размещение - это расположение информации (данных и команд) определенного типа по конкретным адресам памяти системы. Во время выполнения программы в оперативной памяти хранятся ее данные. Микросхемы оперативной памяти (RAM) иногда называют энергозависимой памятью: после выключения компьютера данные, хранимые в них, будут потеряны, если они предварительно не были сохранены на диске или другом устройстве внешней памяти. Чтобы избежать этого, некоторые приложения автоматически делают резервные копии данных.

  • Физически оперативная память в системе представляет собой набор микросхем или модулей, содержащих микросхемы, которые обычно подключаются к системной плате. Эти микросхемы или модули могут иметь различные характеристики и, чтобы функционировать правильно, должны быть совместимы с системой, в которую устанавливаются. В современных компьютерах используются запоминающие устройства трех основных типов: ROM (Read Only Memory). Постоянное запоминающее устройство - ПЗУ, не способное выполнять операцию записи данных.

DRAM (Dynamic Random Access Memory). Динамическое запоминающее устройство с произвольным порядком выборки. SRAM (Static RAM). Статическая оперативная память.

Память типа ROM

В памяти типа ROM (Read Only Memory), или ПЗУ (постоянное запоминающее устройство), данные можно только хранить, изменять их нельзя. Именно поэтому такая память используется только для чтения данных. ROM также часто называется энергонезависимой памятью, потому что любые данные, записанные в нее, сохраняются при выключении питания. Поэтому в ROM помещаются команды запуска ПК, т.е. программное обеспечение, которое загружает систему.

ROM и оперативная память - не противоположные понятия. На самом деле ROM представляет собой часть оперативной памяти системы. Другими словами, часть адресного пространства оперативной памяти отводится для ROM. Это необходимо для хранения программного обеспечения, которое позволяет загрузить операционную систему. Основной код BIOS содержится в микросхеме ROM на системной плате, но на платах адаптеров также имеются аналогичные микросхемы. Они содержат вспомогательные подпрограммы BIOS и драйверы, необходимые для конкретной платы, особенно для тех плат, которые должны быть активизированы на раннем этапе начальной загрузки, например видеоадаптер. Платы, не нуждающиеся в драйверах на раннем этапе начальной загрузки, обычно не имеют ROM, потому что их драйверы могут быть загружены с жесткого диска позже - в процессе начальной загрузки.

Flash-память – разновидность ROM

В настоящее время в большинстве систем используется одна из форм Flash-памяти, которая называется электрически стираемой программируемой постоянной памятью (Electrically Erasable Programmable Readonly Memory - EEPROM). Flash-память является по-настоящему энергонезависимой и перезаписываемой, она позволяет пользователям легко модифицировать ROM, программно-аппаратные средства системных плат и других компонентов (таких, как видеоадаптеры, платы SCSI, периферийные устройства и т.п.). (не путать с USB-flash накопителями )

Память типа DRAM

За несколько лет определение RAM (Random Access Memory) превратилось из обычной аббревиатуры в термин, обозначающий основное рабочее пространство памяти, создаваемое микросхемами динамической оперативной памяти (Dynamic RAM - DRAM) и используемое процессором для выполнения программ. Одним из свойств микросхем DRAM (и, следовательно, оперативной памяти в целом) является динамическое хранение данных, что означает,

  • во-первых, возможность многократной записи информации в оперативную память,

  • а во-вторых, необходимость постоянного обновления данных (т.е., в сущности, их перезапись) примерно каждые 15 мс (миллисекунд).

Динамическая оперативная память (Dynamic RAM - DRAM) используется в большинстве систем оперативной памяти современных ПК. Основное преимущество памяти этого типа состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большой емкости. Ячейки памяти в микросхеме DRAM - это крошечные конденсаторы, которые удерживают заряды. Именно так (наличием или отсутствием зарядов) и кодируются биты. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться (обновляться), так как в противном случае электрические заряды в конденсаторах памяти будут “стекать” и данные будут потеряны. Регенерация происходит, когда контроллер памяти системы берет крошечный перерыв и обращается ко всем строкам данных в микросхемах памяти.

Большинство систем имеют контроллер памяти (обычно встраиваемый в набор микросхем системной платы), который настроен на соответствующую промышленным стандартам частоту регенерации, равную, например, 15 мкс.

Ко всем строкам данных обращение осуществляется по прохождении 128 специальных циклов регенерации. Это означает, что каждые 1,92 мс (128x15 мкс) прочитываются все строки в памяти для обеспечения регенерации данных. Регенерация памяти, к сожалению, отнимает время у процессора: каждый цикл регенерации по длительности занимает несколько циклов центрального процессора. В старых компьютерах циклы регенерации могли занимать до 10% (или больше) процессорного времени, но в современных системах, работающих на частотах, равных сотням мегагерц, расходы на регенерацию составляют 1% (или меньше) процессорного времени.

Память типа SRAM

Также существует так называемая статическая оперативная память (Static RAM - SRAM), не требующая постоянного обновления данных. Каждый двоичный разряд хранится в схеме с обратной связью(триггере), именно наличие этой обратной связи позволяет избежать постоянного перезаписывания состояния элемента памяти. Следует заметить, что данные сохраняются в оперативной памяти только при включенном питании. Достоинства:

  • Быстрый доступ

  • Простая схемотехника

  • Низкое энергопотребление.

Недостатки - невысокая плотность записи, что ведет к увеличению стоимомости.

Жесткий диск

512 байт на сектор.

Шины

Почему именно так устроен компьютер?

Потому что в таком случае он превращается в подобие конструктора- его можно собрать из любых устройств, имеющихся на рынке (в том числе и произведенных различными фирмами). ПРЕИМУЩЕСТВА ОТКРЫТОЙ АРХИТЕКТУРЫ ЗАКЛЮЧАЮТСЯ В ТОМ, ЧТО ПОЛЬЗОВАТЕЛЬ ПОЛУЧАЕТ ВОЗМОЖНОСТЬ:

1) ВЫБРАТЬ КОНФИГУРАЦИЮ КОМПЬЮТЕРА. Например, если Вам не нужен принтер, никто и ничто не заставляет Вас его покупать вместе с новым компьютером.

2) РАСШИРИТЬ СИСТЕМУ, ПОДКЛЮЧИВ К НЕЙ НОВЫЕ УСТРОЙСТВА. Например, накопив денег и купив принтер, Вы легко сможете подключить его к Вашему компьютеру.

3) МОДЕРНИЗИРОВАТЬ СИСТЕМУ, ЗАМЕНИВ ЛЮБОЕ ИЗ УСТРОЙСТВ БОЛЕЕ НОВЫМ. В частности, можно заменить материнскую плату, чтобы из компьютера на базе процессора старого типа получить компьютер на базе процессора нового типа.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА

Для оценки возможностей вычислительной машины необходимо знать ее технические характеристики:

1) ТИП ПРОЦЕССОРА. Компьютер на базе процессора более современного типа будет при всех прочих равных условиях производительнее чем машины на базе процессоров старых типов.

2) ТАКТОВАЯ ЧАСТОТА. Это основная характеристика быстродействия компьютера. Напомним, что компьютер сводит выполнение всех операций к большому числу простейших действий. ТАКТ - промежуток времени для выполнения одной простейшей машинной операции. ТАКТОВАЯ ЧАСТОТА - количество тактов в секунду. Очевидно, чем больше это число, тем быстрее работает компьютер. ТАКТОВАЯ ЧАСТОТА измеряется в герцах. 1 ГЕРЦ = 1 такт в секунду. Современные компьютеры работают на тактовых частотах в несколько десятков или сотен МегаГерц, то есть выполняют несколько десятков или сотен миллионов простейших машинных операций за одну секунду.

3) РАЗРЯДНОСТЬ - объем информации, передаваемый по шине за 1 машинный такт. Иными словами, разрядность - ширина канала передачи данных..

4) ОБЪЕМ ОПЕРАТИВНОЙ ПАМЯТИ. Определяет возможность на ПК различного ПО.

5) ХАРАКТЕРИСТИКИ ПЕРИФЕРИЙНЫХ УСТРОЙСТВ. Все предыдущие характеристики касались устройств, находящихся на материнской плате. К характеристикам периферийных устройств относятся емкость жесткого диска, число и типы дисководов для дискет, тип дисплея и объем видеопамяти, тип и скорость печати принтера, быстродействие модема и т.д.