Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

vse_krome_dvukh_voprosov

.pdf
Скачиваний:
20
Добавлен:
03.05.2015
Размер:
4.53 Mб
Скачать

1.1. Определение волны. Механические и электромагнитные волны. Связь вида волн со свойствами среды и источника . Фронт волны. Понятие о скалярных и векторных волнах.

1)Волна — изменение состояния среды или физического поля (возмущение), распространяющееся либо колеблющееся в пространстве и времени или в фазовом пространстве.

2)Механические волны – процесс распространения механических колебаний в среде (жидкой, твердой, газообразной).Следует запомнить, что механические волны переносят энергию, форму, но не переносят массу.

Важнейшей характеристикой волны является скорость ее распространения. Волны любой природы не распространяются в пространстве мгновенно, их скорость конечна.

ЭЛЕКТРОМАГНИ́ТНЫЕ ВО́ЛНЫ, электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью, зависящей от свойств среды. Электромагнитной волной называют распространяющееся электромагнитное поле

3) Различают два вида механических волн: поперечные и продольные.

1.Поперечные волны:

Волны называются поперечными, если частицы среды колеблются перпендикулярно (поперек) лучу волны. Они существуют в основном за счет сил упругости, возникающих при деформации сдвига, а поэтому существуют только в твердых средах.

На поверхности воды возникают поперечные волны, так как колеблется граница сред.В поперечных волнах различают горбы и впадины.Длина поперечной волны - расстояние между двумя ближайшими горбами или впадинами.

2.Продольные волны:

Волны называются продольными, если частицы среды колеблются вдоль луча волны. Они возникают за счет деформации сжатия и напряжения, поэтому существуют во всех средах.

В продольных волнах различают зоны сгущения и зоны разряжения.

Длина продольной волны - расстояние между двумя ближайшими зонами сгущения или зонами разряжения.

Если волна распространяется в направлении единичного вектора m, можем ввести вектор k = km (волновой вектор), тогда ks = (kr), и поверхность равных фаз ks = const определяется уравнением плоскости (kr) = const, нормальной к направлению распространения волны. Если k – вещественный вектор, то А=const всюду. Такая волна называется однородной плоской волной.

Функция F удовлетворяет однородному уравнению Гельмгольца и в том случае, если

k=k¢+iно при условии, что |k|2 = k2 – вещественно, т.е. (k¢) = 0, а |k¢|2–||2 = k2. В

этом случае решение описывает неоднородную плоскую гармоническую волну, у которой поверхность равных фаз и поверхность равных амплитуд – плоскости, ортогональные друг другу, а скорость меньше, чем у однородной волны с той же частотой и в той же среде.

Для произвольной зависимости от координат однородное волновое уравнение имеет

следующий вид . Чтобы плоская волна распространялась в направлении оси х (в прямоугольной системе координат), должно

выполняться , т.е. источником плоской волны является бесконечная плоскость y0z.

В цилиндрических координатах . Если возмущение

исходит от бесконечного цилиндра, то , и волновое уравнение имеет

вид . После несложных преобразований его можно привести к

виду: . При больших

значениях r имеем . Решением этого уравнения

является откуда следует, что поверхность равных фаз – цилиндр, а

амплитуда волны убывает пропорционально . Такая волна называется цилиндрической.

В сферических координатах . При

точечном источнике волновое уравнение можно представить в

виде: . Его решение – . В этом случае поверхность

равных фаз – сфера, и амплитуда уходящей волны убывает как . Такая волна называется сферической.

4)Волновой фронт (фронт волны) - геометрическое место множества точек, до которых дошло колебание к данному моменту времени

5)скалярная волна Проходит сквозь электронную оболочку атома и взаимодействует с ядром непосредственно. Скалярные волны постоянно поглощаются и испускаются всеми ядрами во вселенной. Любое крупное скопление ядер - звезда, планета - мощный поглотитель, излучатель, резонатор скалярных волн.

1.2. Монохроматические волны. Волновая поверхность, фазовая скорость. Длина волны, групповая скорость и ее физический смысл. Вектор Умова.

1)Монохроматическая волна модель в физике, удобная для теоретического описания явлений волновой природы, означающая, что

в спектр волны входит всего одна составляющая по частоте. Стоячая монохроматическая волна — волна, формирующаяся при

распространении двух плоских монохроматических электромагнитных волн одинаковой поляризации навстречу друг другу.

2)Волновая поверхность - геометрическое место множества точек, колеблющихся в одинаковой фазе. Луч волны всегда перпендикулярен волновой поверхности. Луч волны - направление распространения волны

Длина волны - путь, пройденный волной за период (или расстояние между точками, колеблющимися с разностью фаз два пи). Волновой процесс периодичен во времени и пространстве (периодичность процесса во времени характеризуется периодом; периодичность процесса в пространстве характеризуется длиной волны).

Фа́зовая ско́рость — скорость перемещения точки, обладающей постоянной фазой колебательного движения, в пространстве вдоль заданного направления. Обычно рассматривают направление, совпадающее с направлением волнового вектора, и фазовой называют скорость, измеренную именно в этом направлении, если противное не указано явно (то есть если явно не указано направление, отличное от направления волнового вектора). Фазовая скорость по направлению волнового вектора совпадает со скоростью движения фазового фронта (поверхности постоянной фазы)

Фазовая скорость вдоль направления, отклонѐнного от волнового вектора на угол α. Рассматривается монохроматическая плоская волна.

Групповая скорость — это величина, характеризующая скорость распространения «группы волн» - то есть более или менее хорошо локализованной квазимонохроматической волны (волны с достаточно узким

спектром). Обычно интерпретируется как скорость перемещения максимума амплитудной огибающей квазимонохроматического волнового пакета (или цуга волн).

Физический смысл групповой скорости. Групповая скорость во многих важных случаях определяет скорость переноса энергии. Групповая скорость определяется динамикой физической системы, в которой распространяется волна (конкретной среды, конкретного поля итп). В большинстве случаев подразумевается линейность этой системы (точно или приближенно).

Для одномерных волн групповая скорость вычисляется из закона дисперсии:

,

где угловая частота, волновое число.

Групповая скорость волн в пространстве (например, трехмерном или двумерном) определяется градиентом частоты по волновому вектору :

или (для трехмерного пространства):

Замечание: групповая скорость вообще говоря зависит от волнового вектора (в одномерном случае - от волнового числа), то есть вообще говоря различна для разной величины и для разных направлений волнового вектора.

3)Вектор Пойнтинга (также вектор Умова — Пойнтинга) —

вектор плотности потока энергии электромагнитного поля, одна из компоненттензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

(в системе СГС),

(в системе СИ),

где E и H — векторы напряжѐнности электрического и магнитного полей соответственно.

В случае квазимонохроматических электромагнитных полей, справедливы следующие формулы для усреднѐнной по периоду комплексной плотности потока энергии[1]:

(в системе СГС),

(в системе СИ),

где E и H — векторы комплексной

амплитуды электрического и магнитного полей соответственно. В этом случае чѐткий физический смысл имеет только действительная часть комплексного вектора S — это вектор усреднѐнной за период плотности потока энергии. Физический смысл мнимой части зависит от конкретной задачи.

Модуль вектора Пойнтинга равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.

Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то нормальная составляющая вектора S непрерывна на границе двух сред.

Вектор Пойнтинга и импульс электромагнитного поля

В силу симметричности тензора энергии-импульса, все три компоненты вектора пространственной плотности импульса электромагнитного поля равны соответствующим компонентам вектора Пойнтинга, делѐнным на квадрат скорости света:

(в системе СИ)

В этом соотношении проявляется материальность электромагнитного поля.

Поэтому, чтобы узнать импульс электромагнитного поля в той или иной области пространства, достаточно проинтегрировать вектор Пойнтинга по объѐму.

1.3 Уравнение плоской монохроматической волны, волновой вектор.

1.4 Волновое уравнение

2.1 «поперечные бегущие волны, распространяющейся вдоль струны»

Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью. Процесс распространения колебаний в среде называется волной. Механические волны бывают разных видов. Если при распространении волны частицы среды испытывают смещение в направлении, перпендикулярном направлению распространения, такая волна называется поперечной.

Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту (рис. 2.6.1) или по струне. Если смещение частиц среды происходит в направлении распространения волны, такая волна называетсяпродольной. Волны в упругом стержне (рис. 2.6.2) или звуковые волны в газе являются примерами таких волн. Волны на поверхности жидкости имеют как поперечную, так и продольную компоненты. Как в поперечных, так и в

продольных волнах не происходит переноса вещества в направлении распространения волны. В процессе распространения частицы среды лишь совершают колебания около положений равновесия. Однако волны переносят энергию колебаний от одной точки среды к другой.

Характерной особенностью механических волн является то, что они распространяются в материальных средах (твердых, жидких или газообразных). Существуют волны, которые способны распространяться и в пустоте (например, световые волны). Для механических волн обязательно нужна среда, обладающая способностью запасать кинетическую и потенциальную энергию. Следовательно, среда должна обладать инертными и упругими свойствами. В реальных средах эти свойства распределены по всему объему.

Продольные механические волны могут распространяться в любых средах – твердых, жидких и газообразных. Если в одномерной модели твердого тела один или несколько шариков сместить в направлении, перпендикулярном цепочке, то возникнет деформация сдвига. Деформированные при таком смещении пружины будут стремиться возвратить смещенные частицы в положение равновесия. При этом на ближайшие несмещенные частицы будут действовать упругие силы, стремящиеся отклонить их от положения равновесия. В результате вдоль цепочки побежит поперечная волна. В жидкостях и газах упругая деформация сдвига не возникает.

Если один слой жидкости или газа сместить на некоторое расстояние относительно соседнего слоя, то никаких касательных сил на границе между слоями не появляется. Силы, действующие на границе жидкости и твердого тела, а также силы между соседними слоями жидкости всегда направлены по нормали к границе – это силы давления. То же относится к газообразной среде. Следовательно, поперечные волны не могут существовать в жидкой

или газообразной средах.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Они характеризуются амплитудой A колебания частиц, частотой f

и длиной волны λ. Синусоидальные волны распространяются в однородных средах с некоторой постоянной скоростью υ. Смещение y(x, t) частиц среды из положения равновесия в синусоидальной волне зависит от координаты x на оси OX, вдоль которой распространяется волна, и от времени t по закону:

где – так называемое волновое число, ω = 2πf – круговая частота.

2.2 «звуковые волны в газах»

Звуковые волны в жидкостях являются волнами сжатия - разрежения, как и в газах. Скорость дается той же формулой . Однако жидкость гораздо менее сжимаема, чем газ, и поэтому для нее во много раз больше величина В, больше и плотность r. Скорость звука в жидкостях ближе к скорости в твердых материалах, чем в газах. Она гораздо меньше, чем в газах, зависит от температуры. Например, скорость в пресной воде равна 1460 м/с при 15,6° С. В морской воде нормальной солености она при той же температуре составляет 1504 м/с. Скорость звука возрастает с повышением температуры воды и концентрации соли.

7. «Частицы в бесконечной потенциальной яме. Квантовая энергия связанных частиц»

Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

где l — ширина «ямы», а энергия отсчитывается от ее дна (рис. 296).

Уравнение Шредингера (217.5) для стационарных состояний в случае одномерной задачи запишется в виде

(220.1)

По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х=0 и х=1) непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные условия в данном случае имеют вид

(220.2)

В пределах «ямы» (0 £ х £ l) уравнение Шредингера (220.1) сведется к уравнению

или

(220.3)

где

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]