Скачиваний:
137
Добавлен:
06.05.2013
Размер:
2.92 Mб
Скачать

3. Космические лучи

Космические лучи (излучение) - это частицы, заполняющие межзвездное пространство и постоянно бомбардирующие Землю. Они открыты в 1912 г. австрийским физиком Гессом с помощью ионизационной камеры на воздушном шаре. Максимальные энергии космических лучей 1021 эВ, т.е. на много порядков превосходят энергии, доступные современным ускорителям (1012 эВ). Поэтому изучение космических лучей играет важную роль не только в физике космоса, но также и в физике элементарных частиц. Ряд элементарных частиц впервые был обнаружен именно в космических лучах (позитрон - Андерсон, 1932 г.; мюон () - Неддермейер и Андерсон, 1937 г.; пион () - Пауэлл, 1947 г.). Хотя в состав космических лучей входят не только заряженные, но и нейтральные частицы (особенно много фотонов и нейтрино), космическими лучами обычно называют заряженные частицы.

При обсуждении космических лучей следует уточнять, о каких именно лучах идет речь. Различают следующие типы космических лучей:

1. Галактические космические лучи - космические частицы, приходящие на Землю из недр нашей Галактики. В их состав не входят частицы, генерируемые Солнцем.

2. Солнечные космические лучи - космические частицы, генерируемые Солнцем.

Поток галактических космических лучей, бомбардирующих Землю, примерно изотропен и постоянен во времени и составляет 1 частица/см2сек (до входа в земную атмосферу). Плотность энергии галактических космических лучей 1 эВ/см3, что сравнимо с суммарной энергией электромагнитного излучения звезд, теплового движения межзвездного газа и галактического магнитного поля. Таким образом, космические лучи - важный компонент Галактики.

Состав галактических космических лучей:

  1. Ядерная компонента - 93% протонов, 6.5% ядер гелия, <1% более тяжелых ядер (т.е. отвечает распространенности ядер во Вселенной).

  2. Электроны. Их число 1% от числа ядер.

  3. Позитроны. Их число 10% от числа электронов.

  4. Антиадроны составляют меньше 1%.

Энергии галактических космических лучей охватывают огромный диапазон - не менее 15 порядков (106-1021 эВ). Их поток для частиц с E>109 эВ быстро уменьшается с ростом энергии. Спектр энергий ядерной компоненты, исключая низкие энергии, подчиняется выражению

n(E) = noE-, (15.5)

ãäå no - константа, а 2.7 при E<1015 ýÂ è 3.1-3.2 ïðè E>1015 эВ. Энергетический спектр ядерной компоненты показан на рис.15.6.

Поток частиц сверхвысоких энергий крайне мал. Так на площадь 10 км2 за год попадает в среднем не более одной частицы с энергией 1020 эВ. Характер спектра для электронов с энергиями >109 эВ аналогичен приведенному на рис.15.6. Поток галактических космических лучей не менялся в течение по крайней мере 1 млрд лет.

Галактические космические лучи, очевидно, имеют нетепловое происхождение. Действительно, максимальные температуры (109K) достигаются в центре звезд. При этом энергия теплового движения частиц 105 эВ. В то же время частицы галактических космических лучей, достигающих окрестности Земли, в основном имеют энергии >108 ýÂ.

Рис. 15.6. Энергетический спектр ядерной компоненты космических

лучей. Энергия дана в системе центра масс.

Есть веские основания полагать, что космические лучи генерируются, главным образом, вспышками сверхновых (другие источники космических лучей - пульсары, радиогалактики, квазары). В нашей Галактике взрывы сверхновых происходят в среднем не реже одного раза в 100 лет. Легко подсчитать, что для поддержания наблюдаемой плотности энергии космических лучей (1 эВ/см3) достаточно им передавать всего несколько процентов мощности взрыва. Выбрасываемые при вспышках сверхновых протоны, более тяжелые ядра, электроны и позитроны далее ускоряются в специфических астрофизических процессах (о них будет сказано ниже), приобретая энергетические характеристики, присущие космическим лучам.

В составе космических лучей практически нет метагалактических лучей, т.е. попавших в нашу Галактику извне. Все наблюдаемые свойства космических лучей можно объяснить исходя из того, что они образуются, накапливаются и длительное время удерживаются в нашей Галактике, медленно вытекая в межгалактическое пространство. Если бы космические частицы двигались прямолинейно, они вышли бы за пределы Галактики через несколько тысяч лет после своего возникновения. Столь быстрая утечка привела бы к невосполнимым потерям и резкому снижению интенсивности космических лучей.

На самом деле наличие межзвездного магнитного поля с сильно запутанной конфигурацией силовых линий заставляет заряженные частицы двигаться по сложным траекториям (это движение напоминает диффузию молекул), увеличивая время пребывания этих частиц в Галактике в тысячи раз. Возраст основной массы частиц космических лучей оценивают в десятки миллионов лет. Космические частицы сверхвысоких энергий отклоняются галактическим магнитным полем слабо и сравни-тельно быстро покидают Галактику. Этим, возможно, объясняется излом в спектре космических лучей при энергии 31015 ýÂ.

Остановимся очень кратко на проблеме ускорения космических лучей. Частицы космических лучей двигаются в разряженной и электрически нейтральной космической плазме. В ней нет значительных электростатических полей, способных ускорять заряженные частицы за счет разности потенциалов между различными точками траектории. Но в плазме могут возникать электрические поля индукционного и импульсного типа. Так индукционное (вихревое) электрическое поле появляется, как известно, при увеличении напряженности магнитного поля со временем (так называемый, бетатронный эффект). Ускорение частиц может быть также вызвано их взаимодействием с электрическим полем плазменных волн в областях с интенсивной турбулентностью плазмы. Существуют и другие механизмы ускорения, на которых мы не имеем возможности останавливаться в данном курсе. Более детальное рассмотрение показывает, что предложенные механизмы ускорения способны обеспечить рост энергии заряженных частиц, выброшенных при взрывах сверхновых, с 105 äî 1021 ýÂ.

Заряженные частицы, испускаемые Солнцем, - солнечные космические лучи – весьма важный компонент космического излучения, бомбардирующего Землю. Эти частицы ускоряются до высоких энергий в верхней части атмосферы Солнца во время солнечных вспышек. Солнечные вспышки подвержены определенным временным циклам. Самые мощные повторяются с периодом 11 лет, менее мощные – с периодом 27 дней. Мощные солнечные вспышки могут увеличить поток космических лучей, падающих на Землю со стороны Солнца, в 106 раз по сравнению с галактическим.

По сравнению с галактическими космическими лучами в солнечных космических лучах больше протонов (до 98-99% всех ядер) и соответственно меньше ядер гелия (1.5%). В них практически нет других ядер. Содержание ядер с Z2 в солнечных космических лучах отражает состав солнечной атмосферы. Энергии частиц солнечных космических лучей меняются в интервале 105-1011 эВ. Их энергетический спектр имеет вид степенной функции (15.5), где - уменьшается от 7 до 2 по мере уменьшения энергии.

Все приведенные выше характеристики космических лучей относятся к космическим частицам до входа в атмосферу Земли, т.е. к, так называемому, первичному космическому излучению. В результате взаимодействия с ядрами атмосферы (главным образом, кислородом и азотом) высокоэнергичные частицы первичных космических лучей (прежде всего протоны) создают большое число вторичных частиц – адронов (пионов, протонов, нейтронов, антинуклонов и т.д.), лептонов (мюонов, электронов, позитронов, нейтрино) и фотонов. Развивается сложный многоступенчатый каскадный процесс. Кинетическая энергия вторичных частиц расходуется в основном на ионизацию атмосферы.

Толщина земной атмосферы около 1000 г/см2. В то же время пробеги высокоэнергичных протонов в воздухе 70-80 г/см2, а ядер гелия – 20-30 г/см2. Таким образом, высокоэнергичный протон может испытать до 15 столкновений с ядрами атмосферы и вероятность дойти до уровня моря у первичного протона крайне мала. Первое столкновение происходит обычно на высоте 20 км.

Лептоны и фотоны появляются в результате слабых и электромагнитных распадов вторичных адронов (главным образом, пионов) и рождения -квантами e-e+-пар в кулоновском поле ядер:

o 2,

+,

ÿäðî + ÿäðî + e- +e+.

Таким образом, вместо одной первичной частицы возникает большое число вторичных, которые делят на адронную, мюонную и электронно-фотонную компоненты. Лавинообразное нарастание числа частиц может привести к тому, что в максимуме каскада их число может достигать 106-109 (при энергии первичного протона >1014 эВ). Такой каскад покрывает большую площадь (много квадратных километров) и называется широким атмосферным ливнем (ðèñ.15.7).

После достижения максимальных размеров происходит затухание каскада в основном за счет потери энергии на ионизацию атмосферы. Поверхности Земли достигают в основном релятивистские мюоны. Сильнее поглощается электронно-фотонная компонента и практически полностью “вымирает” адронная составляющая каскада. В целом поток частиц космических лучей на уровне моря примерно в 100 раз меньше потока первичных космических лучей, составляя около 0.01 частицы/см2ñåê.

Ðèñ. 15.7

Соседние файлы в папке Введение в физику ядра и частиц (И. М. Капитонов)