Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архив1 / kursovaya(112).docx
Скачиваний:
22
Добавлен:
06.08.2013
Размер:
416.08 Кб
Скачать

Идеальный цикл Ренкина

Для оценки эффективности паросиловых установок с термодинамической точки зрения ограничимся рассмотрением идеального термодинамического цикла Ренкина, в которой предполагается, что все элементы установки работают идеально, т. е. без потерь теплоты.

На рис. 1 в координатах Т,s показан идеальный цикл паросиловой установки, получивший название цикл Ренкина. Точка 3 соответствует состоянию воды при выходе из смесителя конденсатов. Так как конденсат имеет температуру насыщения, соответствующую давлению пара в деаэраторе, то точка 3 лежит на нижней пограничной кривой. Процесс сжатия воды в насосе из-за несжимаемости жидкости и неизменяемости температуры можно считать изохорным и изотермическим. В координатах Т,s точки 3 и 4 практически совпадают, ибо температура и энтропия воды в результате сжатия в насосе остаются неизменными.

Далее по линии 4-5 проходит изобарный процесс подогрева воды до кипения.

По линии 6-1 – процесс перегрева пара до нужной температуры. Процесс 4-5-6-1 осуществляется в котлоагрегате. Перегретый пар, состояние которого характеризуется точкой 1, поступает в турбину, где адиабатно расширяется. Пар характеризуется точкой 2.Затем пар конденсируется по линии 2-3 и цикл повторяется снова.

Рис. 1 Идеальный цикл Ренкина

Таким образом формула для нахождение цикла Ренкина примет вид:

Построение теплофикационного цикла

Построение цикла теплофикации проводят по Ts диаграмме (рис. 2). Линию х = 0 (полная конденсация пара) до критической точки К и линию х = 1 (насыщенный водяной пар) строят по табличным данным зависимости энтропии воды и насыщенного пара от температуры. Линию 1–2–3, характеризующую процесс охлаждения пара в турбине, строят по значениям температуры и энтропии перегретого пара в отборах (см. табл. 1). Из точки 3 (пар в конденсаторе) проводят изотерму ТК до пересечения с линией х = 0 – получают точку 4 (конденсат в конденсаторе). Затем проводят изотерму от линиих = 0 (точка 6) до линии х = 1 (точка 7). Полученная таким образом линия 6 – 7 отражает процесс испарения воды в парогенераторе. Проводя изотерму Т3 и соединяя точки 8 и 2, получают линию 2–8–5, характеризующую процесс охлаждения и конденсации пара в сетевом подогревателе. Соединяя точки 7 и 1, получают линию 1–2–3–4–5–6–7–1 – теплофикационный цикл.

Рис. 2. Построение цикла теплофикации.

Сетевой подогреватель

Назначение сетевого подогревателя состоит в нагреве заданного коли­чества сетевой воды до заданной температуры. По параметрам теплоносителей сетевые подогреватели работают в существенно более сложных условиях, чем конденсаторы. Зато объемные расходы теплоносителей, поступающих в подогреватели, существенно меньше и, как результат, их габариты значительно меньше, чем конденсаторов.

Расчет сетевого подогревателя проводится по упрощенной методике и сводится к определению теплообменной поверхности. Температуру теплоносителя, поступающего от потребителя тепла принимаем 40 0С. Температуру теплоносителя, направляемого потребителю тепла принимаем 80 0С. По заданным температурам теплоносителей на входе и выходе аппарата рассчитывается средний логарифмический температурный напор. Коэффициент теплопередачи можно принять по справочным данным. Средний логарифмический температурный напор рассчитывается по формуле:

Расход сетевого теплоносителя определяется по формуле:

Расчет теплообменной поверхности сетевого подогревателя производится по формуле:

По полученным данным подбирается аппарат, подходящий по характеристикам.

Соседние файлы в папке Архив1