Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

1-20

.docx
Скачиваний:
17
Добавлен:
17.05.2015
Размер:
96.24 Кб
Скачать

14 . Гибридизация орбиталей — гипотетический процесс смешения разных (s, p, d) орбиталей центрального атома многоатомной молекулы с возникновением того же числа орбиталей, эквивалентных по своим характеристикам. sp3-гибридизация: Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов. Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28', что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

15. NH3: у атома азота 7 электронов. На внешнем электронном слое находится 5 электронов. 3 из них неспаренных. У Н 1 электрон и за счет обобщения электронных пар азота и водорода образуется связь. Для того, чтоб хим. в-во достигло устойчивого состояния, необходимо обобщить в свободную орбиталь электроны Н и N. H2O: у атома кислорода находится 2 неспаренных электрона. За счет обобщения электрона водорода и кислорода образуя связь. Валентный угол — угол, образованный направлениями химических связей, исходящими из одного атома. Знание валентных углов необходимо для определения геометрии молекул. Валентные углы зависят как от индивидуальных особенностей присоединенных атомов, так и от гибридизации атомных орбиталей центрального атома. Для простых молекул валентный угол, как и другие геометрические параметры молекулы, можно рассчитать методами квантовой химии. Валентный угол сложных молекул определяют методами дифракционного структурного анализа. Метод Гиллеспи–Найхолма основан на том, что реальная геометрия молекулы определяется не только гибридизацией АО, но и числом двухэлектронных двухцентровых связей (связывающих электронных пар) и наличием неподеленных электронных пар. характерные особенности σ- и π-связей. σ-Связь прочнее π-связи. Это обусловлено более эффективным осевым перекрыванием АО при образовании σ-МО и нахождением σ-электронов между ядрами. По σ-связям возможно внутримолекулярное вращение атомов, т.к. форма σ-МО допускает такое вращение без разрыва связи (аним., ~33 Kб). Вращение по двойной (σ + π) связи невозможно без разрыва π-связи! Электроны на π-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с σ-электронами. Поэтому поляризуемость π-связи значительно выше, чем σ-связи. Ковалентная связь считается локализованной, если ее электронная пара находится в поле двух ядер и связывает только два атома. Делокализованная связь - связь, электронная пара которой рассредоточена между несколькими (более 2) ядрами атомов (подобие металлической связи). Такая делокализация (рассредоточение) электронов характерна для сопряженных p-связей, т.е. кратных связей, чередующихся с одинарными. Рассредоточение электронов - энергетически выгодный процесс, т.к. приводит к снижению энергии молекулы. Необходимым условием делокализации p-электронов является p-перекрывание р-АО соседних sp2- или sp-атомов, лежащих в одной плоскости. Делокализация p-электронов приводит к тому, что в сопряженной системе связи становятся нецелочисленными (дробными), т.е. ни двойными или тройными, ни одинарными. Иначе говоря, связи имеют нецелочисленный порядок.

16. Энергия и длина связи. Количество энергии, выделяющееся при образовании химической связи, называется энергией химической связи Есв. Она имеет единицу измерения кДж/моль. Для многоатомных соединений с однотипными связями за энергию связи принимается среднее ее значение, рассчитанное делением энергии образования соединения из атомов на число связей. Чем больше энергия химической связи, тем устойчивее молекулы. Важной характеристикой химической связи является ее длина lсв, равная расстоянию между ядрами в соединении. Она зависит от размеров электронных оболочек и степени их перекрывания. Имеется определенная корреляция между длиной и энергией связи: с уменьшением длины связи обычно растет энергия связи и соответственно устойчивость молекул. Сумма энергии ионизации и сродства к электрону называется электроотрицательностью. Поляризуемость- межмолекулярная электронная плотность смещается к атому с большей электроотрицательностью, тогда центры тяжести (+) и (-) не совпадают и возникает электрический диполь. Дипольный момент электрический, векторная величина, характеризующая асимметрию распределения положительных и отрицательных зарядов в электрически нейтральной системе. Электрический момент диполя: μ=ɋ*l (μ- момент диполя, ɋ- заряд электрона,l- длина диполя). Длина диполя- расстояние между полюсами. Чем больше дипольный момент, тем больше полярность связи и молекулы. Дипольный момент является векторной величиной. Вектор дипольного момента направлен от центра положительного заряда к центру отрицательного.

17. при полном смещении межъядерной электронной плотности к атому с большей электрообрицательностью длина поля становится равной длине связи, а атомы превращаются в положительно и отрицательно заряженные ионы, между которыми действуют силы электрическогопритяжения. Такая связь наз. Ионной. Ионная связь- вид хим. связи, возникающий в результате взаимного электрического притяжения противоположно заряженных ионов. ионная связь не обладает направленностью и насыщаемостью, в отличии от ковалентной. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

18. Металлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений. Во всех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены. Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8). Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей.

19. Кристалли́ческая решётка — вспомогательный геометрический образ, вводимый для анализа строения кристалла. Решётка имеет сходство с канвой или сеткой, что даёт основание называть точки решётки узлами. Решёткой является совокупность точек (атомов), которые возникают из отдельной произвольно выбранной точки кристалла под действием группы трансляции. Это расположение замечательно тем, что относительно каждой точки все остальные расположены совершенно одинаково. Применение к решётке в целом любой из присущих ей трансляций приводит к её параллельному переносу и совмещению. Для удобства анализа обычно точки решётки совмещают с центрами каких-либо атомов из числа входящих в кристалл, либо с центрами молекул. Классификация решёток по симметрии. Сингонии: триклинная сингония — наименьшая симметрия, нет одинаковых углов, нет осей одинаковой длины; моноклинная сингония — два прямых угла, нет осей одинаковой длины; ромбическая сингония — три прямых угла (поэтому ортогонально), нет осей одинаковой длины; гексагональная сингония — две оси одинаковой длины в одной плоскости под углом 120°, третья ось под прямым углом; тетрагональная сингония — две оси одинаковой длины, три прямых угла; тригональная сингония — три оси одинаковой длины и три равных угла, не равных 90°; кубическая сингония — высшая степень симметрии, три оси одинаковой длины под прямым углом.

20. Основные положения ММО: 1. Все электроны принадлежат молекуле в целом. Молекула представляет собой единую совокупность атомных ядер и электронов. 2. Каждому электрону в молекуле соответствует молекулярная орбиталь.

АО s p d f

МО σ π Ϭ φ

3. молекулярную орбиталь можно представить как линейную комбинацию атомных орбиталей, т.е. результат их сложения и вычисления: NАО=NМО

ММО рассматривает х.с. как результат распределения электронов в молекуле по ее орбиталям. МО заполняются электронами в соответствии с принципом наименьшей энергии, исключ. Паули, правилом Хунда. Электроны на связывающих молекулярных орбиталях упрочняют связь, на разрыхляющих как бы дестабилизируют (расшатывают). Молекула является устойчивой лишь в том случае, если число электронов на связывающих орбиталях превышает число электронов на разрыхляющих. Электроны, находящиеся на несвязывающих молекулярных орбиталях, участия в образовании химической связи не принимают. Из исходных атомных орбиталей возникает n МО. На связывающей МО электрон большую часть времени пребывает между ядрами (повышается электронная плотность), способствуя их химическому связыванию. На разрыхляющей же МО электрон большую часть времени находится за ядрами, вызывая отталкивание ядер друг от друга. Характер распределения электронов по МО определяет порядок (кратность) связи, её энергию, межъядерные расстояния (длина связи), магнитные свойства молекул и др. Заполнение молекулярных орбиталей подчиняется тем же правилам, что и заполнение атомных: принципу энергетической выгодности, принципу Паули, правилу Хунда, принципу заполнения электронных структур Aufbau. В общепринятом приближении молекулярная орбиталь рассматривается как линейная комбинация атомных орбиталей (приближение МО ЛКАО).

Кратность связи в теории молекулярных орбиталей определяется выражением где и — суммарные количества электронов на связывающих и разрыхляющих орбиталях соответственно.