Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Никитин, Бойко - Методы и средства измерений, испытаний и контроля - 2004

.pdf
Скачиваний:
371
Добавлен:
11.08.2013
Размер:
10.99 Mб
Скачать

обмотки и индуцирующие в них ЭДС е1 и e2. Значения этих ЭДС связаны с взаимными индуктивностями М1 и М2 между первичной обмоткой и каждой из секций вторичной обмотки соотношениями (14.29) /8/

е1 = 2 π f I1 M1 ; е2= 2 π f I1 M2 ,

(14.29)

где f — частота тока I1.

При встречном включении обмоток секций 4 и 5 получаем соотношение

(14.30) /8/

Е = е1—е2 = 2 π f I1 (M1 — М2) = 2 π f I1 M,

(14.30)

где М—взаимная индуктивность между первичной и вторичной обмотками.

Для унифицированного ДТ-преобразовательного элемента, имеющего во вторичной обмотке резисторы R1 и R2, выходной сигнал Uвых определяется взаимной индуктивностью Mвых между первичной обмоткой и выходной цепью и может быть представлен в виде формулы (14.31)

Uвых = 2 π f I1 Mвых ,

(14.31)

Величина Мвых связана с перемещением δ сердечника 6 зависимостью

(14.32)

Mвых = Mmax

δ

,

(14.32)

 

 

δmax

 

где Мmах— максимальное значение взаимной индуктивности между первичной обмоткой и выходной цепью преобразователя, соответствующее максимальному δmах перемещению сердечника.

Решая совместно уравнения (14.31) и (14.32), получим статическую характеристику унифицированного ДТ-преобразователя перемещения (14.33) /8/

Uвых =

2πfI1M max

δ ,

(14.33)

δmax

 

 

 

В настоящее время разработаны ДТ-преобразовательные элементы с полным ходом сердечника 1,6, 2,5 и 4 мм. Преобразователи имеют унифицированный сигнал в виде напряжения переменного тока, изменяющегося в диапазоне —1 ÷ 0 ÷ +1 В. Знак «минус» указывает на изменение фазы сигнала. Указанным значениям выходного сигнала

соответствуют изменения взаимной индуктивности ДТ преобразовательного элемента —10 ÷ 0 ÷ 10 мГн.

Преобразование измеряемого давления в электрический сигнал Uвых рассматриваемым преобразователем давления осуществляется путем преобразования давления в деформацию (перемещение) ЧЭ, жестко связанного с сердечником 6, и последующего преобразования перемещения сердечника 6 в электрический сигнал ДТ-преобразовательным элементом. Статическая характеристика преобразователя давления ДТ-типа может быть получена путем совместного решения уравнения (14.23) и уравнения (14.24) /8/

δ = k P,

(14.24)

где δ—деформация ЧЭ; k—коэффициент преобразования.

Преобразователи давления ДТ-типа работают в комплекте с дифференциально-трансформаторными вторичными приборами. Классы точности ДТ-преобразователей давления 1,0 и 1,5.

Для измерения перепада давления разработаны мембранные дифманометры с ДТ-преобразовательным элементом, осуществляющим преобразование перемещения мембранного блока в сигнал измерительной информации. Классы точности преобразователей перепада давления 1,0 и 1,5. Время установления выходного сигнала не более 1 с.

14.2.3.5 Емкостные измерительные преобразователи давления

Схема измерительного преобразователя давления, оснащенного емкостным преобразовательным элементом, приведена на рисунке 20 в. Измеряемое давление воспринимается металлической мембраной 1, являющейся подвижным электродом емкостного преобразовательного элемента. Неподвижный электрод 2 изолируется от корпуса с помощью кварцевых изоляторов. Зависимость емкости С преобразовательного элемента от перемещения δ мембраны 1 имеет вид (14.25) /8/

С = ε S/(δ -δо)

(14.25)

где ε—диэлектрическая проницаемость среды, заполняющей межэлектродный зазор;

S—площадь электродов;

δо—расстояние между электродами при давлении, равном нулю. Для преобразования С в сигнал измерительной информации обычно

используют мосты переменного тока либо резонансные LС-контуры. Емкостные преобразователи давления применяют для измерения давления до 120 МПа. Толщина мембраны 0,05—1 мм. Преобразователи давления данного

типа используются для преобразования быстро изменяющихся давлений. Постоянная времени преобразователя 10 - 4 с.

Основная погрешность ± (0,2-5) %.

Тензорезисторные измерительные преобразователи давления. Измерительные преобразователи давления, оснащенные преобразовательными элементами тензорезисторного типа (от лат. tendere — натягивать) получили название тензорезисторных измерительных преобразователей давления. Преобразователи давления этого вида представляют собой деформационный ЧЭ, чаще всего мембрану, на которую наклеиваются или напыляются тензорезисторы. В основе принципа работы тензорезисторов лежит явление тензоэффекта, суть которого состоит в изменении сопротивления проводников и полупроводников при их деформации. Связь между изменением сопротивления тензорезистора и его деформацией устанавливается соотношением (14.26) /8/

R

= k

l

(14.26)

R

τ

l ,

где R/R — относительное изменение сопротивления тензорезистора; kτ постоянный коэффициент, определяемый материалом

тензорезистора;

l / l — относительное изменение длины тензорезистора. Получили распространение проволочные и фольговые

тензорезисторы, изготавливаемые из проводников типа манганина, нихрома, константана, а также полупроводниковые тензорезисторы, изготавливаемые из кремния и германия р- и n-типов. Сопротивление тензорезисторов, изготавливаемых из проводников, составляет 30 - 500 Ом, а сопротивление полупроводниковых тензорезисторов от 5 10–2 - 10 кОм. Совершенствование технологии изготовления полупроводниковых тензорезисторов создало возможность изготавливать тензорезисторы непосредственно на кристаллическом элементе, выполненном из кремния или сапфира. Упругие элементы кристаллических материалов обладают упругими свойствами, приближающимися к идеальным. Сцепление тензорезистора с мембраной за счет молекулярных сил позволяют отказаться от использования клеющих материалов и улучшить метрологические характеристики преобразователей. На рисунке 14.123 а показана сапфировая мембрана 3 с расположенными на ней однополосковыми тензорезисторами р-типа с положительной 1 и отрицательной 2 чувствительностями. Положительной чувствительностью обладает тензорезистор, у которого отношение R/R > 0, если же R/R < 0 — чувствительность отрицательна. Структура однополоскового тензорезистора приведена на рисунке 14.123 б.

1—тензорезистор; 2— защитное покрытие; 3—металлизированные токоведущие дорожки; 4—упругий элемент преобразователя (сапфировая

мембрана).

Рисунок 14.123 - Схемы тензорезисторных R/R и даже термокомпенсационные элементы чувствительных элементов.

Тензорезисторы можно располагать на мембране так, что при дедеформации они будут иметь разные по знаку приращения сопротивления. Это позволяет создавать мостовые схемы, в каждое из плеч которого включаются тензорезисторы с соответствующим значением.

На рисунке 14.124 а показана схема тензорезисторного измерительного преобразователя разности давления. Мембранный тензомодуль 4 представляет собой металлическую мембрану, к которой сверху припаяна сапфировая мембрана с напыленными четырьмя кремниевыми тензорезисторами, образующими плечи неравновесного моста. Тензомодуль закреплен на основании 2 и отделен от измеряемой среды двумя разделительными металлическими мембранами 1 и 3. Замкнутые полости между тензомодулем и мембранами заполнены полиметилсилоксановой жидкостью. Измеряемая разность давлений Р1 — P2 воздействует на тензомодуль через указанные мембраны и жидкость. Через герметичные выводы 5 тензомодуль подключается к встроенному электронному устройству 6. С помощью этого устройства изменение сопротивления тензорезисторов преобразуется в унифицированный токовый выходной сигнал (0—5, 0—20 или 4—20 мА), который передается по искробезопасной двухпроводной линии дистанционной передачи к блоку питания 7. Последний устанавливается во взрывобезопасном помещении и обеспечивает питание первичного преобразователя по двухпроводной линии. По этой же линии одновременно передается выходной токовый сигнал.

Рисунок 14.124 - Схемы тензорезисторных измерительных преобразователей разности давлений с унифицированным токовым выходным сигналом

Наряду с указанной функцией блок питания повышает мощность выходного сигнала до уровня, необходимого для подключения внешней нагрузки Rн, и формирует заданный уровень выходного сигнала (0—5, 0—20 или 4—20 мА). В тензорезисторных преобразователях избыточного давления, абсолютного давления и разрежения используются измерительные блоки, аналогичные рассмотренным. Отличие состоит в том, что измерительный преобразователь подключается к объекту «плюсовой» камерой, а «минусовой» сообщается с атмосферой. У измерительных преобразователей абсолютного давления «минусовая» камера вакуумирована.

Тензорезисторный преобразователь давления с тензомодулем рычажномембранного типа показан на рисунке 14.124 б. Тензомодуль рычажномембранного типа 3 размещен в заполненной полиметилсилоксановой жидкостью замкнутой полости 1 и отделен от измеряемой среды металлическими гофрированными мембранами 2 и 9. Мембраны по наружному контуру приварены к основанию 10 и соединены между собой центральным штоком 8, который связан с концом рычага тензомодуля. Разность давлений вызывает прогиб мембран 2 и 9 тензомодуля 3, что сопровождается изменением сопротивления тензорезисторов 4. Электрический сигнал с тензомодуля через герметичные выводы 5 подается во встроенное электронное устройство 6, которое связано с блоком питания 7. Назначение блока питания аналогично рассмотренному.

Классы точности тензорезисторных измерительных преобразователей избыточного давления, разрежения и разности давлений 0,6;1,0; 1,5. Время установления выходного сигнала при скачкообразном изменении измеряемого параметра 0,5 и 2,5 с. Диапазоны измерений: избыточного давления—от 0 —

10-3 до 0 - 60 МПа; разряжения - от – 1 - 0 до – 10 - 0 кПа; абсолютного давления - от 0 - 2,5 кПа до 0 - 2,5 МПа; разности давлений - от 0 - 1 кПа до 0 - 2,5 МПа.

Кроме рассмотренных разработана модификация тензорезисторного преобразователя, предназначенного для измерения избыточного давления: Преобразователь имеет унифицированные токовые сигналы 0—5, 0—20, 4—20 мА. Классы точности преобразователя 0,25; 0,5; 1,0. Диапазоны измерений избыточного давления от 0 - 2,5 кПа до 0 - 100 МПа.

Пьезоэлектрические измерительные преобразователи давления.

В основу работы этих преобразователей положено преобразование измеряемого давления в усилие посредством деформационного, чувствительного элемента и последующего преобразования этого усилия в сигнал измерительной информации пьезоэлектрическим преобразовательным элементом. Принцип действия пьезоэлектрического преобразовательного элемента основан на пьезоэлектрическом эффекте, наблюдаемом у ряда кристаллов, таких, как кварц, турмалин, титанат бария и др. Суть пьезоэлектрического эффекта состоит в том, что если кварцевые пластины Х- среза подвергнуть сжатию силой N, то на ее поверхности возникнут заряды разных знаков.

Значение заряда Q связано с силой N соотношением (14.27) /8/

Q = k N,

(14.27)

где k — пьезоэлектрическая постоянная.

Рисунок 14.125 – Схема пьезоэлектрического

измерительного

преобразователя

 

Значение k не зависит от размера пластины и определяется природой кристалла. Для кварца k = 2,110 -12 Кл/Н.

На рисунке 14.125 показана схема пьезоэлектрического измерительного преобразователя давления. Измеряемое давление преобразуется мембраной 4 в усилие, вызывающее сжатие столбиков кварцевых пластин 2 диаметром 5 мм и толщиной 1 мм. Возникающий электрический заряд Q, через выводы 1 подается на электронный усилитель 5, обладающий большим входным

сопротивлением—1013 Ом. Значение заряда связано с измеряемым давлением Р зависимостью (14.28) /8/

Q = k F Р,

(14.28)

где F – эффективная площадь мембраны.

Для уменьшения инерционности преобразователя объем камеры 3 минимизируют.

Так как частота собственных колебаний системы «мембрана — кварцевые пластины» составляет десятки килогерц, то измерительные преобразователи этого типа обладают высокими динамическими характеристиками, что обусловило их широкое применение при контроле давления в системах с быстропротекающими процессами. Чувствительность пьезоэлектрических измерительных преобразователей давления может быть повышена путем применения нескольких, параллельно включенных кварцевых пластин и увеличения эффективной площади мембраны. Верхние пределы измерений пьезоэлектрических преобразователей давления с кварцевыми, чувствительными элементами 2,5 - 100 МПа. Классы точности 1,5; 2,0. Из-за утечки заряда с кварцевых пластин преобразователи давлений этого типа не используются для измерения статических давлений.

14.2.3.6 Деформационные измерительные преобразователи основанные на методе уравновешивающего преобразования

Измерительные преобразователи давления этого типа получили широкое применение в автоматизированных системах управления технологическими процессами ряда отраслей промышленности. Они входят в ГСП и имеют унифицированные пневматические и электрические токовые выходные сигналы.

Отличительной особенностью этих измерительных преобразователей является блочный принцип построения с использованием унифицированных преобразователей «сила—давление» или «сила—ток». Это позволяет создавать на их базе не только измерительные преобразователи избыточного давления, но и разности давлений и разрежения. Работа первичных измерительных преобразователей, основанных на методе уравновешивающего преобразования, подробно изложена в /8/. При рассмотрении работы указанных первичных измерительных преобразователей необходимо принять во внимание, что измеряемым параметром П в данном случае является давление Р, а чувствительным элементом—один из рассмотренных деформационных чувствительных элементов. На рисунке 14.126 показаны схемы присоединения деформационных ЧЭ к унифицированному преобразователю «сила — давление».

По схемам рисунка 14.126 а—в конструируются измерительные преобразователи избыточного давления, оснащенные соответственно сильфоном, одновитковой трубчатой пружиной или прямолинейной трубчатой

пружиной. Измерительные преобразователи абсолютного давления конструируются по схеме рисунка 14.126 г, разрежения — по схеме рисунка 14.126 д, разности давлений – рисунку 14.126 е. Подсоединение деформационных ЧЭ к унифицированным преобразователям «сила — ток» осуществляется по аналогичным схемам. Классы точности пневматических измерительных преобразователей давления: 0,5; (0,6); 1,0; 1,5; разности давлений: 0,6; 1,0; 1,5; 2,5; разрежения: 1,0; 1,5. Классы точности измерительных преобразователей давления, разности давлений, разрежения с унифицированным токовым сигналом : 0,5 (0,6); 1,0; 1,5 .

1-унифицированный преобразователь; 2- рычаг;

3 – деформационный ЧЭ

Рисунок 14.126 - Схемы присоединения деформационных чувствительных элементов к унифицированному преобразователю «сила – давление»

14.3 Измерения тепловых величин

14.3.1 Общие сведения

Температурой называют физическую величину, характеризующую степень нагретости тела. Практически все технологические процессы, различные свойства вещества зависят от температуры.

В отличие от таких физических величин, как длина, масса и др. температура является не экстенсивной (параметрической), а интенсивной (активной) величиной. Так, если разделить на две равные части гомогенное тело, то его масса делится пополам. Температура, являющаяся интенсивной величиной, таким свойством аддитивности не обладает, т. е. для системы, находящейся в термическом равновесии, любая микроскопическая часть системы имеет одинаковую температуру. Поэтому не представляется возможным создание эталона температуры, наподобие того, как создаются

эталоны экстенсивных величин. Измерять температуру можно только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые поддаются непосредственному измерению. Эти свойства тел называют термометрическими. К ним относят длину, объем, плотность, термоЭДС, электрическое сопротивление и т. д. Вещества, характеризующиеся термометрическими свойствами, называют термометрическими. Средство измерений температуры называют термометром. Для создания термометра необходимо иметь температурную шкалу.

14.3.2 Температурные шкалы

Температурной шкалой называют конкретную функциональную числовую связь температуры со значениями измеряемого термометрического свойства. В связи с этим представляется возможным построение температурной шкалы на основе выбора любого термометрического свойства. В то же время нет ни одного термометрического свойства, которое линейно изменяется с изменением температуры и не зависит от других факторов в широком интервале измерения температур. Первые шкалы появились в XVIII в. Для построения их выбирались две опорные, или реперные точки t1 и t2, представляющие собой температуры фазового равновесия чистых веществ. Разность температур t1 –t2 называют основным температурным интервалом.

Фаренгейт (1715 г.), Реомюр (1776 г.) и Цельсий (1742 г.) при построении шкал основывались на допущении линейной связи между температурой t и термометрическим свойством, в качестве которого использовалось расширение объема жидкости V (формула 14.27) /8/

t=a+bV,

(14.27)

где а и b — постоянные коэффициенты.

Подставив в уравнение (14.27) V=V1 при t=t1 и V=V2 при t=t2, после преобразований получим уравнение (14.28) температурной шкалы /8/

t = t

+

t2

t1

(V V

),

(14.28)

 

 

1

V2

1

 

 

V1

 

 

В шкалах Фаренгейта, Реомюра и Цельсия точке плавления льда t1 соответствовали +32, 0 и 0 °, а точке кипения воды t2212, 80 и 100 °. Основной интервал t2 –t1 в этих шкалах делится соответственно на N = 180, 80 и 100 равных частей, и 1/N часть каждого из интервалов называют градусом Фаренгейта - t°F, градусом Реомюра – t °R и градусом Цельсия—t °С. Таким образом, для шкал, построенных по указанному принципу, градус не является единицей измерения, а представляет собой единичный промежуток - масштаб шкалы.

Для пересчета температуры из одной указанной шкалы в другую используют соотношение (14.29)

t °С= 1,25 °R=-(5/9)(t oF - 32),

(14.29)

Позднее было выяснено, что показания термометров, имеющих разные термометрические вещества (например, ртуть, спирт и др.), использующих одно и то же термометрическое свойство и равномерную градусную шкалу, совпадают лишь в реперных точках, а в других точках показания расходятся. Последнее особенно заметно при измерении температур, значения которых расположены далеко от основного интервала.

Указанное обстоятельство объясняется тем, что связь между температурой и термометрическим свойством на самом деле нелинейна и эта нелинейность различна для различных термометрических веществ. В частности, в рассматриваемом случае нелинейность между температурой и изменением объема жидкости объясняется тем, что температурный коэффициент объемного расширения жидкости сам изменяется от температуры и это изменение различно для различных капельных жидкостей.

На основе описанного принципа построения может быть получено любое количество температурных шкал, значительно различающихся между собой. Такие шкалы называют условными, а масштабы этих шкал - условными градусами. Проблема создания температурной шкалы, не зависящей от термометрических свойств веществ, была решена в 1848 г. Кельвином, а предложенная им шкала была названа термодинамической. В отличие от условных температурных шкал термодинамическая температурная шкала является абсолютной.

Термодинамическая шкала температур основана на использовании второго закона термодинамики. В соответствии с этим законом коэффициент полезного действия η тепловой машины, работающей по обратимому циклу

Карно, определяется только температурами нагревателя ТН и холодильника ТX и не зависит от свойств рабочего вещества, таким образом коэффициент полезного действия вычисляют по формуле (14.30) /8/

η =

ТН ТX

=

QН QX

,

(14.30)

ТН

 

 

 

Q Н

 

где QН и QX - соответственно количество теплоты, полученное рабочим веществом от нагревателя и отданное холодильнику.

Кельвином было предложено для определения температуры использовать равенство (14.31) /8/

TН X = QН /QX,

(14.31)