Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UBA_11 / лекции бакалавр / I семестр / Лекция 1 нов.doc
Скачиваний:
24
Добавлен:
19.05.2015
Размер:
585.73 Кб
Скачать

3. Нормальное, тангенциальное и полное ускорения.

Движение тела характеризуется скоростью и ускорением, которые могут изменяться во времени. Пусть материальная точка движется по плоской криволинейной траектории с переменной по величине и направлению скоростью (рис. 4). Для характеристики степени криволинейности вводится понятие радиуса кривизны в данной точке траектории.

Радиусом кривизны R траектории называют радиус окружности, которая сливается с криволинейной траекторией на бесконечно малом ее участке.

В данной точке траектории касательная всегда перпендикулярна радиусу кривизны.

Пусть и скорость, и ускорение меняются по величине и направлению.

Мы знаем, что ускорение тела при движении есть .

Вектор скорости можно представить как произведение модуля скоростии некоторого единичного вектора , сонаправленного с вектором линейной скорости , направленного по касательной к траектории.

Таким образом, полное ускорение материальной точки при криволинейном движении можно представить в виде суммы двух слагаемых. Первое слагаемое .

Вектор сонаправлен с вектором , т.е. направлен по касательной к траектории и называется тангенциальным или касательным ускорением. Его модуль равен , поэтому характеризует быстроту изменения скорости криволинейного движения по величине, но не направлению, так как вектор не изменяется.

Следовательно, можно заключить, что - тангенциальное ускорение, характеризующее изменение скорости по величине, оно направлено по касательной к траектории.

Второе слагаемое называется нормальным ускорением. Что характеризует этот вектор, куда направлен, как его рассчитать?

Так как вектор сонаправлен с вектором , который определяет изменениенаправления вектора линейной скорости, то он характеризует изменение скорости криволинейного движения по направлению.

О

пределим величину и направление . Рассмотрим частный случай движения материальной точки по окружности радиусом R с постоянной по величине скоростью (рис.5). Среднее изменение скорости на дуге АВ отнесем к точке С, лежащей посередине дуги.

направлено вдоль R к центру окружности.

:

.

перпендикулярно скорости, направлено вдоль радиуса к центру окружности. Его называют нормальным, радиальным или центростремительным ускорением.

Полное ускорение материальной точки при криволинейном движении характеризует быстроту изменения скорости как по величине, так и по направлению (рис.6).

, .

  1. Угловая скорость и угловое ускорение.

Поворот тела на некоторый угол можно задать в виде отрезка, длина которого равна , а направление совпадает с осью, вокруг которой производится поворот. Направление поворота и изображающего его отрезка связано правилом правого винта.

В математике показывается, что очень малые повороты можно рассматривать как векторы, обозначаемые символами или . Направление вектора поворота связывается с направлением вращения тела; является псевдовектором, так как не имеет точки приложения.

При вращательном движении твердого тела каждая точка движется по окружности, центр которой лежит на общей оси вращения (рис. 7). При этом радиус-вектор R, направленный от оси вращения к точке, поворачивается за время t на некоторый угол . Для характеристики вращательного движения вводится угловая скорость и угловое ускорение.

Угловой скоростьюназывается векторная величина, равная первой производной угла поворота тела по времени.

- вектор элементарного поворота тела.

Угол в 1 радиан – это центральный угол, длина дуги которого равна радиусу окружности. 360о = 2 рад.

Направление угловой скорости задается правилом правого винта: вектор угловой скорости сонаправлен с , то есть с поступательным движением винта, головка которого вращается в направлении движения точки по окружности. Линейная скорость точки связана с угловой скоростью:

.

В векторной форме .

Если в процессе вращения угловая скорость изменяется, то возникает угловое ускорение:

Угловое ускорение – векторная величина равная первой производной угловой скорости по времени. Вектор угловой скорости сонаправлен с вектором элементарного изменения угловой скорости , происшедшего за времяdt.

При ускоренном движении вектор параллелен (рис. 8), при замедленном – противонаправлен (рис. 9).

Угловое ускорение возникает в системе только тогда, когда происходит изменение угловой скорости, то есть когда линейная скорость движения изменяется по величине. Изменение же скорости по величине характеризует тангенциальное ускорение.

Найдем связь между угловым и тангенциальным ускорениями:

.

Изменение направления скорости при криволинейном движении характеризуется нормальным ускорением :

.

Таким образом, связь между линейными и угловыми величинами выражается следующими формулами:

.

Типы вращательного движения

а) переменное – движение, при котором изменяются и:

б) равнопеременное – вращательное движение с постоянным угловым ускорением:

.

в) равномерное – вращательное движение с постоянной угловой скоростью:

.

Равномерное вращательное движение можно характеризовать периодом и частотой вращения.

Период – это время, за которое тело совершает один полный оборот.

, [T] = c.

Частота вращения – это число оборотов совершаемых за единицу времени.

, [] = c-1.

За один оборот: ,

, .

Соседние файлы в папке I семестр