Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Апоптоз / Апоптоз кардиомиоцитов

.doc
Скачиваний:
38
Добавлен:
14.08.2013
Размер:
53.25 Кб
Скачать

Для объяснения природы апоптоза кардиомиоцитов необходимо учесть некоторые результаты исследования в области ренин-ангиотензиновой системы человека. Был идентифицирован, в том числе и на тканях предсердий человека, второй тип рецепторов к ангиотензину-II [18]. Этот тип рецепторов экспрессирован в эмбриональном периоде, но отсутствует в постнатальном периоде [19].

При дисфункции миокарда происходит реэкспрессия второго типа рецепторов к ангиотензину-II [20]. Последние являются медиаторами апоптоза [21, 22]. Еще одной вероятной причиной развития апоптоза кардиомиоцитов является повышение концентрации свободного цитозольного кальция. Наконец, в качестве пракринного индуктора апоптоза кардиомиоцитов нельзя исключить TNF-a. Повышение уровня TNF-a ответственно за отрицательный инотропный эффект, кардиомиопатию, отек легкого. С другой стороны, TNF-a является классическим индуктором апоптоза. Поэтому нельзя исключить, что существует связь между TNF-a-апоптозом и дисфункцией миокарда, вызываемой этим цитокином [23].

Для клеток, имеющих терминальную дифференцировку, а к таковым относятся кардиомиоциты, апоптоз не является характерным. Однако при кардиомиопатиях, гипертрофии миокарда и хронической сердечной недостаточности различной этиологии часто происходит прогрессивное снижение сократительной способности левого желудочка. Причем нередко этот процесс протекает в отсутствии каких-либо признаков ишемии миокарда. Поэтому в качестве рабочей гипотезы, объясняющей механизм развития хронической сердечной недостаточности, был использован апоптоз кардиомиоцитов.

Ультраструктурные исследования кардиомиоцитов у больных с кардиомиопатиями, гипертрофией сердца и хронической сердечной недостаточностью, а также экспериментальные модели недостаточности левого желудочка четко показали наличие дегенеративных изменений кардиомиоцитов при этой патологии [24, 25]. Элементы апоптотической гибели кардиомиоцитов были констатированы у онкологических больных, леченных кардиотоксичными цитостатиками [26]. В культуре неонатальных кардиомиоцитов крыс программированная гибель клеток развивалась под влиянием гипоксии [27]. Причем апоптоз в этих условиях сочетался с гиперэкспрессией Fas-рецептора.

При использовании метода микроэмболизации коронарных артерий у собак с хронической сердечной недостаточностью (величиной фракции выброса 27+1%), с помощью электронной микроскопии и иммуногистохимического исследования было обнаружено, что апоптотический тип клеток был зафиксирован не только на границе очагов инфаркта, но и в отдаленных от них участках миокарда

Однако в зоне некроза общая встречаемость апоптотических клеток вне зависимости от гистохимической принадлежности в 3-4 раза превышала фоновый уровень. В норме среди кардиомиоцитов апоптоз вообще не был зарегистрирован. При микроэмболизации в зоне очаговых поражений встречаемость апоптоза кардиомиоцитов была в 20 раз выше, чем в отдаленных участках миокарда [28]. На модели ишемии (30 мин) и последующей реперфузии в течение часа сердца у кроликов R.Gottlieb и соавт. показали, что в ответ на реперфузию, но не на ишемию, развивается программированная гибель кардиомиоцитов [29]. Клиническое значение этих данных состоит в том, что, очевидно, поздняя постинфарктная гибель кардиомиоцитов имеет не некротическую, а апоптическую природу. Природа клеточной смерти в условиях ремоделирования гипертрофированного миокарда имеет ряд специфических особенностей, касающихся морфологической картины. В недавно проведенном исследовании S.Yamamoto и соавт. было выявлено повышенное количество лизосомальных структур в кардиомиоцитах желудочков [30]. Высокая лизосомальная и аутофагоцитарная активность, наблюдаемая в пораженных кардиомиоцитах, свидетельствует о наличии саморазрушающего процесса цитоплазматической дегенерации, осуществляемого под контролем самоконтролируемого запрограммированного аутолиза. Было показано, что хронический саморазрушающий протеолиз в пораженных кардиоцитах, хотя и не связан с типичной апоптозной морфологией ядер или цитоплазмы, но может привести к контролируемой смерти кардиоцитов гипертрофированного миокарда. Утечка лизосомальных энзимов (катепсинов) и усилившийся окислительный стресс были способны индуцировать цитоплазматическую деградацию и также выступать в роли триггеров апоптозной деградации ядер.

Неясным остается ответ на вопрос о количественном соотношении пораженных кардиомиоцитов, находящихся на ранней стадии цитоплазматической дегенерации и в действительности теряющих свои ядра до наступления ее конечной стадии. В образцах эксцентрично гипертрофированного миокарда было найдено большое количество кардиомиоцитов, содержащих деградированную ДНК, чем в образцах концентрически гипертрофированного миокарда. Это может свидетельствовать о различных стадиях сердечной недостаточности, поскольку она была выраженной и фатальной при эксцентричной гипертрофии и незначительной при концентрической гипертрофии. Можно говорить о прямой зависимости между выраженностью сердечной недостаточности и количеством погибших кардиомиоцитов. Авторам исследования не удалось обнаружить апоптозную деградацию ядер при электронной микроскопии. Вероятно, апоптозная деградация ядер встречалась редко и/или протекала и завершалась очень быстро. В настоящее время интенсивно изучается роль каспаз в процессах программированной клеточной гибели в условиях развития сердечной недостаточности. H.Yaoita и соавт. продемонстрировали, что Z-VAD-fmk, общий ингибитор каспаз, способен ингибировать процессы апоптоза кардиомиоцитов и площадь инфаркта миокарда у крыс, подвергшихся реперфузии in vivo [31]. Ряд исследований свидетельствует об участии каспаз в процессе высвобождения цитохрома С при гипоксии и индукции апоптоза кардиомиоцитов [32-34]. В недавно проведенных работах было показано повышение уровня каспаз и TNFa в кардиомиоцитах больных с сердечной недостаточностью, в том числе и при кардиомиопатиях [35-37]. Фармакологическая коррекция апоптоза при сердечной недостаточности. В настоящее время имеются фармакологические агенты, способные эффективно ингибировать апоптоз кардиомиоцитов, индуцированный различными стимулами: ишемией/реперфузией, H2O2, TNFa и др. Однако эти вещества (ZVAD-fmk, SB 203580, PD 98059, инсулиноподобный ростовой фактор, N-ацетил-цистеин) применяются в основном в экспериментальных условиях. В этой связи определенные перспективы связаны с дальнейшим клиническим исследованием карведилола (1-[9H-carbazol-4-yloxy]-3-[-(metho-xyphenoxy)ethyl-2-propanol), зарегистрированным фармацевтической фирмой "SmithKleine Beecham Pharmaceuticals" под торговым названием "Coreg(r)". Препарат представляет собой b-блокатор нового поколения с выраженной антиоксидантной и умеренной сосудорасширяющей активностью. В проведенных клинических исследованиях карведилол продемонстрировал значительное снижение уровня смертности у больных с сердечной недостаточностью. Механизмом антиапоптотического действия препарата является подавление экспрессии Fas-рецептора на кардиомиоцитах [38].

Литература:

1. Kerr J.F.R., Wyllie A.H., Curne A.R. Apoptosis: a basic biological phemomenon with wide-ranging implications in tissue kinetics//Br J Cancer 1972; 26 (2): 239-57. 2. James T.N. Normal and abnormal consequences of apoptosis in the human heart: from postnatal morphogenesis to paroxismal arrythmias//Circulation 1994; 90: 556-73. 3. Esterbauer H., Wang G., Puhl H. Lipid peroxidation and its role in atherosderosis//Br Med Bull 1993; 49: 566-76. 4. Araki S., Shimada Y., Kaji K. et al. Apoptosis of vascular endothelial cells by fibroblast growth factor deprivation//Biochem Biophys Res Commun 1990; 168: 1194-200. 5. Bennet M.R., Evan G.I., Newby A.C. Deregulated c-myc oncogene expression blocks vascular smooth muscle cell inhibition mediated by heparin, interferon mitogen depletion and cyclic nucleotide analogues induces apoptotu cell depth//Circ Res 1994; 74: 525-36. 6. Reed V.C., Hardwick S.J., Mitchinson M.S. Fragmentation of DNA in P388D1 macrophages exposed to oxidised low-density lipoproteins//FEBS Lett 1993; 332: 218-20. 7. Han D.K.M., Haudenschild C.C., Hong U.K. et al. Evidence for Apoptosis in Human Atherogenesis and in a Rat Vascular Injury Model//Am J Pathol 1995; 147 (2): 267-77. 8. Geng Y.J., Ubby P. Evidence for Apoptosis in Advanced Human Atheroma. Colocalization with Interleukin-Ip-Converting Enzyme//Am J Pathol 1995; 147 (2): 251-66. 9. Evan G.I., Wyllie A.H., Gilbert C.S. et al. Induction of apoptosis in fibroblasts c-myc protein//Cell 1992; 69: 119-28. 10. Evan G., Littlewood T. Role c-myc in cell growth//Curr Opin Gouct Dev 1993; 3: 44-9. 11. Kretzner L., Blackwood E., Eisenman R. Myc and Max possess distinct transcriptionfl activities//Nature 1992; 359: 426-9. 12. Parkes J.L., Cardell R.R., Hubbard F.C. et al. Cultured human atherosclerotie plague smooth muscle cells retain transforming potential and display enhanced expression of the myc protooncogene//Am J Pathol 1991; 138: 765-75. 13. Siezak J., Tribuiova N., Pristacova J. et al. Hydrogen Peroxide Changes in Ischemic and Reperfused Heart. Cytochemistry and Biochemical and X-Ray Micro analysis//Am J Pathol 1995; 147 (3): 772-81. 14. Shindo T., Ikeda U., Ohkawa F. et al. Nitric oxide synthesis in cardiac myocytes and fibroblast by inflammatory cytokines//Cardiovasc Res 1995; 29 (6): 813-8. 15. Albina J.E., Cui S., Mateo R.B. et al. Nitric Oxidi - Medeated Apoptosis in Murine Peretoneal Macrophages//J Immunol 1993; 150 (II): 5080-5. 16. Beckerman K.P., Rogers H.W., Corbett J.A. et al. Release of Nitric Oxide during the T-Cell-Independent Pathway of Macrophage Activation//J Immunnol 1993; 150 (3): 888-95. 17. Hill M.F., Singal P.K. Antioxidant and oxidative stress changes Failure Subsequent to Myocardial Infarction in Rats//Am J Pathol 1996; 148 (1): 291-300. 18. Yamada T., Horilichi M., Dzau V.S. Angiotensin II type 2 - receptor mediates programmed cell death//Proc Nat Acad Sci (USA) 1996; 93 (1): 156-60. 19. Dzau V.J., Horiucbi M. Differentiai expression oi andiotensin receptor subtypes in the myocardium: a hypothesis//Europ Heart J 1996; 17: 978-80. 20. Massaeri H., Pierce G.N. Involvement of lipoprotein, free radicals and calcium in cardio vascular disease process//Cardiovasc Res 1995; 29 (5): 597-603. 21. Oral N., Kapadia S., Nakano M. et al. Tumor necrosis Factor alfa and Falling Human Heart//Clin Cardiology 1995; 18 (Suppl. IV): 20-7. 22. Herskowitz A., Choi G., Ansari A.A. et al. Cytokins mRNA Expression in Postischemic Reperfusion Myocardium//Am J Pathol 1995; 146(2): 419-28. 23. Watschinger B., Sayegh M.N., Hancock W.W. et al. Up-Regulation of Endothelin-1 mRNA and Peptide Expression in Rat Cardiac Allografts With Rejection and atherosclerosis//Am J Pathol 1995; 146 (5): 1065-72. 24. Sabbah H.N., Sherov V.G., Riddle J.M. et al. Mitichondrial abnormalities in myocardium of dogs with chronic heart failure//J Mol Cell Cardiol 1992; 24: 1333-47. 25. Sharov V.G., Sabbah H.N., Shimoyama H. et al. Abnormalities of contractile structures in miable myocytes of the failing//J Mol Cell Cardiol 1994; 43: 287-97. 26. Hickman J.A. Apoptosis induced by anticancer drugs//Cancer Metastasis Rev 1992; II: 121-39. 27. Tanaka U., Ito H., Adachi S. et al. Hypoxia induces with engances expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes//Circul Res 1994; 75 (3): 426-33. 28. Sharov V.G., Sabbah H.N., Shimoiama H. et al. Evidence of Cardiocyte Apoptosis in Myocardium of Dogs with Chronic Heart Failure//Am J Pathol 1996; 148 (1): 41-9. 29. Gottlieb R.A., Burleson K.O., Kjoner R.A. et al. Reperfusion injiury induces apoptosis in rabbit cardiomyocytes//J Clin Invest 1994; 94: 1621-8. 30. Yamammoto S., Sawada K., Shimomura H., Kawamura K., James T.N. On the nature of cell death during remodeling of hypertrophied human myocardium//J Mol Cell Cardiol 2000; 32: 161-75. 31. Yaoita H., Ogawa K., Maehara K., Maruyma Y. Attenuation of ischemia/reperfused injury in rats by caspase inhibitors//Circulation 1998; 97: 276-81. 32. De Moissac D., Guervich R.M., Zheng H., Singal P.K., Kirshbaum L.A. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes//J Mol Cell Cardiol 2000; 32: 53-63. 33. Malhotra R., brosius FC III. Glucose uptake and glycolises reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes//J Biol Chem 1999; 274: 12567-75. 34. Yue T.L., Ohlstein E.H., Ruffolo R.R. Jr. Apoptosis: a potential target for discovering novel therapies for cardiovascular diseases//Current opinion in chemical biology 1999; 3: 474-80. 35. Bristow M.R. Tumor necrosis factor and cardimyopathy//Circulation 1999; 97: 1340-1. 36. Colucci W.S. Apoptosis in the heart//New Engl J Med 1996; 335: 1224-6. 37. Olivetti G., Abbi R., Quaini F. et al. Apoptosis in failling human heart//New Engl J Med 1997; 336: 1131-41. 38. Yue T.L., Ma X.L., Wang X. et al. Possible involvement of stress-activates protein kinase signalling pathway and Fas receptor expression in prevention of ischemia-induced cardiomyocute apoptosis by carvedilol//Circ Res. 1998; 82: 166-74.

Источник: http://ill.ru