Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chivers T. - A Guide to Chalcogen-Nitrogen Chemistry (2005)(en)

.pdf
Скачиваний:
83
Добавлен:
15.08.2013
Размер:
3 Mб
Скачать

Heterocyclothiaand Selena-azenes

271

 

O

 

 

N

O

 

Cl

S

 

S

 

 

 

 

 

Cl

 

 

N

 

N

 

 

 

 

 

P

 

 

 

Cl

 

Cl

 

 

 

 

13.28

 

 

 

O

 

Cl

 

 

Cl

N

S

N

Cl

 

 

 

 

Cl

P

 

 

P

Cl

 

N

 

 

N

Cl

P

 

 

P

Cl

 

Cl

N

S

N

Cl

 

 

 

 

 

Cl

 

O

 

 

 

13.30a

 

O Cl

Cl

Cl NS N

P

Cl

N

Cl

P

N

Cl

S

Cl

N

 

P

Cl

 

Cl

P

 

 

Cl

 

 

N

N

 

 

S

 

 

O

Cl

 

 

13.29

 

 

O

Cl

 

Cl

N

S

Cl

 

N

 

Cl

P

P

Cl

N

N

Cl

P

P

Cl

Cl

N

N

Cl

 

S

 

Cl

O

 

 

13.30b

 

Cl

 

 

 

P

Cl

 

 

 

 

 

 

N Cl

 

 

 

P

Cl

 

 

N

O

 

 

 

 

 

S

 

 

O

 

 

 

 

Cl

N

 

 

 

 

N

Cl

P

 

 

P

Cl

Cl

N

P

 

N

Cl

 

 

 

P

 

 

Cl

N

S N

Cl

 

 

 

Cl

O

Cl

 

 

 

Cl

 

 

 

 

 

13.31

 

 

272 A Guide to Chalcogen–Nitrogen Chemistry

Several preparative routes to the heterocycle 13.29 have been reported. These include the vacuum thermolysis of Cl3P=N–PCl2=N– SO2Cl.56 An alternative, low-yield synthesis is the [3 + 3] cyclocondensation of [Cl3P=N=PCl3][PCl6] and sulfamide SO2(NH2)2.57 The best method involves the reaction of sulfamide with PCl5 followed by a [5 + 1] cyclocondensation reaction between the bis(phosphazo)sulfone Cl3P=N–SO2–N=PCl3 and hexamethyldisilazane (Scheme 13.1).58

O O

S

N N

SO2(NH2)2 + 2 PCl5

Cl3P PCl3

(Me3Si)2NH

O

 

Cl

 

O

 

O

 

S

 

 

 

S

 

N

 

N

+ PCl5

N

 

N

Cl

 

Cl

- P(O)Cl3

Cl

 

Cl

P

 

P

P

 

P

Cl

N

Cl

- Me3SiCl

Cl

N

Cl

SiMe3

Scheme 13.1 Synthesis of (NPCl2)2[NS(O)Cl]

The hybrid ring systems 13.28 and 13.29 are colourless solids stable to moist air. The structures of a number of derivatives have been determined. The geometry around sulfur is influenced by the ligands attached to it. For S(O)X centres (X = Cl, F) the halogen is in an axial position with respect to the mean plane of the ring, forcing the oxygen into an equatorial position. However, when Cl is replaced by NMe2 or Ph

Heterocyclothiaand Selena-azenes

273

the oxygen atom adopts the axial position. The S–N bonds are generally shorter than the P–N bonds; the variation in these bond lengths has been attributed to the greater electronegativity of sulfur compared to that of the phosphorus centers.

The reactions of these hybrid ring systems with nucleophilic reagents has been studied in considerable detail, with emphasis on the regiochemistry.54 Broadly speaking, phenylation and fluorination take place preferentially at sulfur, whereas the phosphorus is attacked first in aminolysis and alcoholysis reactions. Thus, fluorination of 13.28 with an excess of AgF2 in boiling CCl4, or with SbF3 at 85°C, causes replacement of the two chlorines on sulfur, but not those on phosphorus. The product is obtained as a mixture of cis and trans isomers in a 4:1 molar ratio. The PCl2 site can be fluorinated by using KF in the presence of 18-crown-6. Friedel-Crafts phenylation of 13.28 produces cis- and trans- (NPCl2)(NSOPh)2 in excellent yields, whereas Ph2Hg gives the monophenylated derivative.

References

1.T. Chivers, D.D. Doxsee, M. Edwards and R. W. Hilts, Diphosphadithiaand Diphosphadiselena-tetrazocines and Their Derivatives in R. Steudel (ed.) The Chemistry of Inorganic Ring Systems, Elsevier, pp. 271-294 (1991).

2.(a) R. Appel and M. Halstenberg, Angew. Chem., Int. Ed. Engl., 15, 695 (1976);

(b)J. Weiss, Acta Crystallogr., B33, 2271 (1977).

3.N. Burford, T. Chivers, A. W. Cordes, W. G. Laidlaw, M. C. Noble, R. T. Oakley and P. N. Swepston, J. Am. Chem. Soc., 104, 1282 (1982).

4.N. Burford, T. Chivers and J. F. Richardson, Inorg. Chem., 22, 1482 (1983).

5.T. Chivers, K. S. Dhathathreyan, S. W. Liblong and T. Parks, Inorg. Chem., 27, 1305 (1988).

6.N. Burford, T. Chivers, P. W. Codding and R. T. Oakley, Inorg. Chem., 21, 982 (1982).

7.N. Burford, T. Chivers, R. T. Oakley and T. Oswald, Can. J. Chem., 62, 712 ( 1984).

274

A Guide to Chalcogen–Nitrogen Chemistry

8.(a) H. W. Roesky and O. Petersen, Angew. Chem., Int. Ed. Engl., 12, 415 (1973);

(b) R. Appel, I. Ruppert, R. Milker and V. Bastian, Chem. Ber., 107, 380 (1974).

9.T. Chivers, S. W. Liblong, J. F. Richardson and T. Ziegler, Inorg. Chem., 27, 860 (1988).

10.T. Chivers, R. W. Hilts, I. Krouse, A. W. Cordes, R. Hallford and S. R. Scott, Can. J. Chem., 70, 2602 (1992).

11.T. Chivers, M. Edwards and M. Parvez, Inorg. Chem., 31, 1861 (1992).

12.T. Chivers, D. D. Doxsee and M. Parvez, Inorg. Chem., 32, 2238 (1993).

13.(a) G. Chung and D. Lee, Bull. Korean Chem. Soc., 21, 300 (2000); (b) H. Jacobsen, T. Ziegler, T. Chivers and R. Vollmerhaus, Can. J. Chem., 72, 1582 (1994).

14.T. Chivers, M. Edwards, C. A. Fyfe and L. H. Randall, Mag. Reson. Chem., 30, 1220 (1992).

15.T. Chivers, D. D. Doxsee, R. W. Hilts, A. Meetsma, M. Parvez and J. C. van de Grampel, J. Chem. Soc., Chem. Commun., 1330 (1992).

16.N. Burford, T. Chivers, M. N. S. Rao and J. F. Richardson, Inorg. Chem., 23, 1946 (1984).

17.M. Brock, T. Chivers. M. Parvez and R. Vollmerhaus, Inorg. Chem., 36, 485 (1997).

18.T. Chivers, G. Y. Dénès, S. W. Liblong and J. F. Richardson, Inorg. Chem., 28, 3683 (1989).

19.T. Chivers and R. W. Hilts, Inorg. Chem., 31, 5271 (1992).

20.T. Chivers, M. Edwards, R. W. Hilts, M. Parvez and R. Vollmerhaus, Inorg. Chem.,

33, 1440 (1994).

21.T. Chivers, M. Edwards, X. Gao, R. W. Hilts, M. Parvez and R. Vollmerhaus, Inorg. Chem., 34, 5037 (1995).

22.T. Chivers, M.Cowie, M. Edwards and R. W. Hilts, Inorg. Chem., 31, 3349 (1992).

23.T. Chivers and R. W. Hilts, Coord. Chem. Rev., 137, 201 (1994).

24.T. Chicers, M. Edwards, A. Meetsma, J. C. van de Grampel and A. van der Lee,

Inorg. Chem., 31, 2156 (1992).

25.T. Chivers, D. D. Doxsee and R. W. Hilts, Inorg. Chem., 32, 3244 (1993).

Heterocyclothiaand Selena-azenes

275

26. T. Chivers, R. W. Hilts, M. Parvez, D. Ristic-Petrovic and K. Hoffman,

J.Organomet. Chem., 480, C4 (1994).

27.O. J. Scherer and R. Wies, Angew. Chem., Int. Ed. Engl., 11, 529 (1972).

28.C. P. Warrens and J. D. Woollins, Inorg. Synth., 25, 46 (1989).

29.H. W. Roesky and H. Wiezer, Angew. Chem., Int. Ed. Engl., 12, 674 (1973).

30.S. M. Aucott, A. M. Z. Slawin and J. D. Woollins, Can. J. Chem., 80, 1481 (2002).

31.G. Schmid, H. Gehrke, H-U. Kolorz and R. Boese, Chem. Ber., 126, 1781 (1993).

32.(a) G. Ertl and J. Weiss, Z. Naturforsch., 29B, 803 (1974); (b) M. Herberhold,

S.Gerstmann, W. Milius and B. Wrackmeyer, Z. Naturforsch., 48B, 1041 (1993).

33.(a) O. J. Scherer and R. Wies, Angew. Chem., Int. Ed. Engl., 10, 812 (1971);

(b) A. Gieren, H. Betz, T. Hubner, V. Lamm, M. Herberhold and K. Guldner,

Z.Anorg. Allg. Chem., 513, 160 (1984); (c) N. W. Alcock, E. M. Holt, J. Kuyper,

J.J. Mayerle and G. B. Street, Inorg. Chem., 18, 2235 (1979); (d) C. Spang,

F.Edelmann, T. Frank, M. Noltemeyer amd H. W. Roesky, Chem. Ber., 122, 1247 (1989).

34.M. Herberhold and K. Schamel, Z. Naturforsch., 43B, 1274 (1988).

35.H. W. Roesky, M. Witt, B. Krebs, G. Henkel and H-J. Korte, Chem. Ber., 114, 201 (1981).

36.A. Gieren, C. Ruiz-Pérez, T. Hübner, M. Herberhold, K. Schamel and K. Guldner,

J.Organomet. Chem., 366, 105 (1989).

37.T. Chivers, K. S. Dhathathreyan, C. Lensink, A. Meetsma, J. C. van de Grampel and

J.L. de Boer, Inorg. Chem., 28, 4150 (1989).

38.M. Herberhold, K. Guldner, A. Gieren, C. Ruiz-Pérez and T. Hübner, Angew. Chem., Int. Ed. Engl., 26, 82 (1987).

39.T. Chivers, D. D. Doxsee, X. Gao and M. Parvez, Inorg. Chem., 33, 5678 (1994).

40.E. Hey, C. Ergezinger and K. Dehnicke, Z. Naturforsch., 44B, 205 (1989).

41.H. W. Roesky, Angew. Chem., Int. Ed. Engl., 11, 642 (1972).

42.S. Pohl, O. Petersen and H. W. Roesky, Chem. Ber., 112, 1545 (1979).

276

A Guide to Chalcogen–Nitrogen Chemistry

43.T. Chivers, M. N. S. Rao and J. F. Richardson, J. Chem. Soc., Chem. Commun., 982 (1982).

44.N. Burford, T. Chivers, M. Hojo, W. G. Laidlaw, J. F. Richardson and M. Trsic,

Inorg. Chem., 24, 709 (1985).

45.T. Chivers, M. N. S. Rao and J. F. Richardson, J. Chem. Soc. Chem. Commun., 700 (1983).

46.T. Chivers and M. N. S. Rao, Inorg. Chem., 23, 3605 (1984).

47.T. Chivers, M. N. S. Rao and J. F. Richardson, J. Chem. Soc., Chem. Commun., 702 (1983).

48.T. Chivers, M. N. S. Rao and J. F. Richardson, J. Chem. Soc., Chem. Commun., 186 (1983).

49.J. A. Dodge, I. Manners, H. R. Allcock, G. Renner and O. Nuyken, J. Am. Chem. Soc., 112, 1268 (1990).

50.T. Chivers, X. Gao, R. W. Hilts, M. Parvez and R. Vollmerhaus, Inorg. Chem., 34, 1180 (1995).

51.T. Chivers. S. S. Kumaravel, A. Meetsma, J. C. van de Grampel and A. van der Lee,

Inorg. Chem., 29, 4591 (1990).

52.T. Chivers, D. D. Doxsee, and J. Fait, J. Chem. Soc., Chem. Commun., 1703 (1989).

53.T. Chivers, D. D. Doxsee, J. Fait and M. Parvez, Inorg. Chem., 32, 2243 (1993).

54.(a) J. C. van de Grampel, Rev. Inorg. Chem., 3, 1 (1981); (b) J. C. van de Grampel,

Coord. Chem. Rev., 112, 247 (1992).

55.Y. Ni, A. J. Lough, A. L. Rheingold and I. Manners, Angew. Chem., Int. Ed. Engl.,

34, 998 (1995).

56.H. H. Baalmann, H. P. Velvis and J. C. van de Grampel, Rec. Trav. Chim. Pays-Bas,

91, 935 (1972).

57.U. Klingebiel and O. Glemser, Z. Naturforsch., 27B, 467 (1972).

58.D. Suzuki, H. Akagi and K. Matsumura, Synth. Commun., 369 (1983).

Chapter 14

Chalcogen–Nitrogen Chains And Polymers

14.1 Introduction

The discovery of the metal-like behaviour and superconducting properties of the non-metallic polymer (SN)x in 1973 sparked interest in the area of sulfur–nitrogen chemistry.1 One aspect of that endeavour invokes the notion that molecular chains that incorporate thiazyl units between organic substituents could serve as molecular wires in the development of nanoscale technology.2 The combination of electronwithdrawing and electron-accepting groups at opposite ends of the chain may generate materials with large molecular dipoles. Subsequent crystallization of these polar molecules in acentric space groups may give rise to materials that exhibit physical properties ranging from nonlinear optical behaviour to piezoelectric and ferroelectric effects. This chapter will begin with a description of the synthesis, structure and properties of (SN)x in order to provide the background for a discussion of sulfur–nitrogen chains involving two-coordinate sulfur.

Polymers involving sulfur in the +4 and, especially, +6 oxidation states have also attracted considerable attention. High molecular weight polymers containing repeating [NS(O)R] (R = Me, Ph) units have been characterized. Hybrid polymers involving combinations of PN and S(IV)N or S(VI)N units in the backbone have also been studied extensively.3 As might be expected, the properties of these polymers resemble those of poly(phosphazenes) rather than (SN)x. For example, poly(thionylphosphazenes) have been found to be useful as matrices for

277

278

A Guide to Chalcogen–Nitrogen Chemistry

phosphorescent sensing devices with potential applications in the aerospace industry. The synthesis, structures and properties of these novel materials are discussed in the second half of this chapter.

14.2 Poly(sulfur nitride), (SN)x, and Related Polymers1

Polymeric sulfur nitride (or polythiazyl) was first reported in 1910. It is prepared by the topochemical, solid-state polymerization of S2N2 at 0°C over several days.4 Although the cracking of S4N4 provides an obvious source, the explosive nature of this starting material prompted a search for other precursors to S2N2 (Section 5.2.4). On the basis of EPR evidence the polymerization process is thought to involve the intermediate formation of a diradical generated by cleavage on one S–N bond (Figure 14.1). A time-resolved X-ray diffraction study shows that

S

 

 

 

N

S

 

 

 

 

N

S

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

S

N

 

 

 

 

S

N

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ring Opening

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

N

 

S

 

 

N

 

S

 

N

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

S

N

 

 

 

 

S

N

 

 

 

S

Polymerization

SN SN S N

N S N S N S

Fig. 14.1 Synthesis and structure of (SN)x

Chalcogen–Nitrogen Chains and Polymers

279

this topochemical process is nondiffusive in nature and produces monoclinic -(SN)x (90%) and orthorhombic .-(SN)x (10%).5a A recent proposal for the polymerization mechanism involves excitation of the square planar singlet S2N2 molecule to the triplet surface, followed by puckering of the triplet species and polymerization in a direction approximately perpendicular to the S2N2 plane.5b

In order to prepare thin films of (SN)x on plastic or metal surfaces, several processing techniques have been investigated, e.g., the electroreduction of [S5N5]+ salts.6 Powdered (SN)x is prepared by the reaction of (NSCl)3 with trimethylsilyl azide in acetonitrile.7 The sublimation of (SN)x at 135°C and at pressure of 3 × 10-6 Torr. produces a gas-phase species, probably the cyclic [S3N3]radical, that reforms the polymer as epitaxial fibres upon condensation.8

Poly(sulfur nitride) is a shiny metallic solid consisting of highly oriented parallel fibres. The crystal structure reveals an almost planar cis, trans polymer with approximately equal adjacent S–N bond lengths of 1.63 and 1.59 Å.4a These values are intermediate between single and double bonds consistent with the delocalized electronic structure of (SN)x. In the conventional bonding description (Section 4.3), each nitrogen and sulfur provide one and two electrons, respectively, in a p orbital IRU Œ-bonding. Consequently, the band structure in the polymer is 75% occupied. According to the spin-coupled valence bond method the Œ–system is composed of a singly occupied Œ orbital on each S atom and a lone pair centred around each N atom. As a good approximation, the polymer may be regarded as a one-dimensional chain of sulfur atoms. The single electron at each sulfur site gives rise to a half-filled band and, hence, metallic character.9 The bond angles at N and S are about 120° and 106°, respectively. Poly(sulfur nitride) is a conducting material at room temperature. It becomes superconducting below liquid helium temperature. The conductivity at room temperature along the fibres is in the range 1– 4 × 103 –1 cm-1 depending on the quality of the crystals, and this value increases by about two orders of magnitude at 4 K. The conductivity across the fibres is much smaller as a result of weak S•••S interactions (3.48 Å) between polymer chains. Typical values of the anisotropy ratio are 50 at room temperature and 1000 at 40 K.1

280 A Guide to Chalcogen–Nitrogen Chemistry

In addition to its conducting properties, the high electronegativity of (SN)x, even greater than that of gold, leads to improvements in the efficiency of certain devices. For example, (SN)x can act as an efficient barrier electrode in ZnS junctions, increasing the quantum efficiency of the blue emission by a factor of 100 over gold.10 It can also be used to increase the efficiency of GaAs solar cells by up to 35%. Metal ions interact more strongly with a poly(sulfur nitride) surface than with other metal electrodes. This property has stimulated investigations of possible applications of (SN)x as an electrode material.12a For example, (SN)x electrodes that have been modified by immersion in sodium molybdate have been shown to reduce acetylene to ethylene.12b

Although (SN)x does not react with water or acidic solutions, it slowly decomposes in alkaline solutions and it is readily oxidized. Partial bromination of (SN)x or powdered S4N4 with bromine vapour yields the blue-black polymer (SNBr0.4)x which has a room temperature conductivity of 2 × 104 –1 cm-1.13 The sulfur-nitrogen chain in this polymer is partially oxidized and the bromine is present as Br3- ions and

intercalated Br2 molecules.14 The polymer (SNBr0.4)x is also produced by the reaction of (NSCl)3 with Me3SiBr in CH2Cl2 at –60°C.15 Similar

highly conducting, non-stoichiometric polymers can be obtained by treating S4N4 with ICl or IBr.13

The selenium analogue of poly(sulfur nitride) is unknown, but its properties would be of considerable interest. The potential precursor Se4N4 is highly explosive and thermolysis under vacuum gives only dinitrogen and elemental selenium.16 Other possible precursors for (SeN)x, such as [NSe]+ or [Se5N5]+, have not been isolated. The mixed chalcogen nitride 1,5-S2Se2N4 (Section 5.2.6) has been prepared and structurally characterized, but attempts to convert this cage to the hypothetical four-membered ring SSeN2 and, hence, the polymer (SNSeN)x, have been unsuccessful.17

Another possible modification of poly(sulfur nitride) that is expected to produce conducting polymers is the replacement of alternating sulfur in the thiazyl chain by an RC unit, i.e., [(R)CNSN]x. This type of polymer would have five Œ-electrons per four atoms in the repeating unit and, consequently, would have a partially occupied conducting band.18 The prospect of tuning the electronic properties of this polymer by

Соседние файлы в предмете Химия