Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методика.docx
Скачиваний:
36
Добавлен:
21.05.2015
Размер:
194.61 Кб
Скачать

4. Свойства определенного интеграла.

1.

b b

ò f(x)dx = ò f(z)dz

a a

2.

a

ò f(x)dx = 0

a

a

ò f(x)dx = F(a) – F(a) = 0

a

3.

b a

ò f(x)dx = – ò f(x)dx

a b

b a

ò f(x)dx = F(a) – F(b) ò f(x)dx = F(b) – F(a) = – (F(a) – F(b))

a b

4. Если a, b и c любые точки промежутка I, на

котором непрерывная функция f(x) имеет первообразную, то

b c b

ò f(x)dx = ò f(x)dx + ò f(x)dx

a a c

F(b) – F(a) = F(c) – F(a) + F(b) – F(c) = F(b) – F(a)

(это свойство аддитивности определенного интеграла)

5. Если l и m постоянные величины, то

b b

b

ò (lf(x) +m j(x))dx = l ò f(x)dx + m òj(x))dx –

a a c

– это свойство линейности определенного интеграла.

6.

b b

b b

ò (f(x)+g(x)+...+h(x))dx = ò f(x)dx+ ò g(x)dx+...+ ò h(x)dx

a a

a a

b

ò (f(x)+g(x)+...+h(x))dx = (F(b) + G(b) +...+ H(b)) –

a

(F(a) + G(a) +...+ H(a)) +C =

= F(b)–F(a)+C1 +G(b)–G(a)+C2+...+H(b)–H(a)+Cn=

b b b

= ò f(x)dx+ ò g(x)dx+...+ ò h(x)dx

a a a

Набор стандартных картинок

Т.к. f(x)<0, то формулу Ньютона-Лейбница составить нельзя, теорема верна только для f(x)³0.

Надо:

1) рассмотреть симметрию функции относительно оси OXABCD®A’B’CD b

2) S(ABCD)=S(A’B’CD) = ò –f(x)dx

a

b b

S= ò f(x)dx = ò g(x)dx

a a

c b

S = ò (f(x)­–g(x))dx+ò(g(x)–f(x))dx

a c

f(x)® f(x)+m

g(x)®g(x)+m

b

S= ò (f(x)+m–g(x)–m)dx =

a

b

= ò (f(x)– g(x))dx

a

Если на отрезке [a;b] f(x)³g(x), то площадь между этими графиками равна

b

ò ((f(x)–g(x))dx

a

Функции f(x) и g(x) произвольные и неотрицательные

b b b

S=ò f(x)dx – ò g(x)dx = ò (f(x)–g(x))dx

a a a

b b

S=ò f(x)dx + ò g(x)dx

aa

5.Примеры.

Пример 1: Вычислить площадь фигуры, ограниченной линиями .

Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа. Причем, чертеж необходимо построить ПРАВИЛЬНО

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно, с техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций. Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.

В данной задаче решение может выглядеть так. Выполним чертеж (обратите внимание, что уравнение  задает ось ):

Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:

На отрезке   график функции  расположен над осью , поэтому:

Ответ: 

Пример 2: Вычислить площадь фигуры, ограниченной линиями  и координатными осями.

Решение: Выполним чертеж: Если криволинейная трапеция полностью расположена под осью , то её площадь можно найти по формуле:  В данном случае:

Ответ: 

Пример 3: Найти площадь плоской фигуры, ограниченной линиями .

Решение: Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы  и прямой . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования . Этим способом лучше, по возможности, не пользоваться.

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж: Повторюсь, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматом».

А теперь рабочая формула: Если на отрезке  некоторая непрерывная функция  больше либо равна некоторой непрерывной функции , то площадь соответствующей фигуры можно найти по формуле: 

Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря,важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ.

В рассматриваемом примере очевидно, что на отрезке  парабола располагается выше прямой, а поэтому из  необходимо вычесть 

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой  сверху и прямой  снизу. На отрезке  , по соответствующей формуле:

Ответ: 

На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось  задается уравнением , а график функции  расположен ниже оси , то