Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Gallup G.A. - Valence Bond Methods, Theory and applications (CUP, 2002)

.pdf
Скачиваний:
26
Добавлен:
15.08.2013
Размер:
2.17 Mб
Скачать

74

 

5 Advanced methods for larger molecules

 

 

We stated above that there is an inequivalent irreducible

representation of

 

S n

associated with each

partition of

n , and

we

use the symbol

fλ to

represent the

number of standard tableaux corresponding to the partition,

 

 

λ. Using induction on

n , Young proved the theorem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fλ2 = n !,

 

(5.38)

 

 

 

λ

 

 

 

 

which should be compared with Eq. (5.15).

 

 

 

 

 

Young also derived a formula for

fλ, but, as will be seen, we need only a small

 

number

of partitions

for our work with fermions

like electrons. These are either

n 2k 0. In fact, the

{n k,k} or

{2k,1 n 2k} for all

k = 0, 1,

. . . , such that

shapes of the tableaux corresponding to these two partitions are closely related,

 

{3,2} may

being

transposes

of one another. Letting

n

= 5 and k = 2, the shape of

be symbolized with dots as

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we interchange rows and columns in this shape, we obtain

• •

• •

which is seen to be the shape of the partition

 

 

 

 

 

 

{22,1 }. Partition shapes and tableaux

related this way are said to be

 

conjugates

, and we use the symbol

˜

 

 

λ to represent the

partition conjugate to

λ.

 

 

 

 

 

 

 

 

 

 

 

 

It should be reasonably self-evident

that

the

conjugate of

a standard tableau

 

 

is a standard tableau of the conjugate shape. Therefore,

 

 

 

 

fλ = fλ˜ ,

and irreducible

representations corresponding to conjugate partitions are the same size. In fact, the

 

 

 

irreducible representations are closely related. If

 

 

 

 

 

D λ(ρ) is

one of the

irreducible

representation matrices for partition

 

 

 

 

λ, one has

 

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

 

 

λ(ρ),

 

 

(5.39)

 

 

 

D λ(ρ) = (1) σρ D

 

 

where

σρ is the signature of

 

ρ.

 

 

 

 

 

 

 

 

 

 

 

As we noted above, Young derived a general expression for

 

 

 

 

fλ for any shape.

For the partitions we need there is, however, some simplification of the general

 

 

expression, and we have for either

 

 

 

 

{n k,k} or

{2k,1 n 2k}

 

 

 

 

 

fλ

=

n

2k + 1

 

 

n + 1

,

 

(5.40)

 

 

 

 

 

 

 

 

 

 

 

 

n

+ 1

 

k

 

 

 

 

 

p

 

 

 

 

 

p !

 

 

 

 

 

 

 

 

q

=

 

 

.

 

 

 

(5.41)

 

 

q!( p

q)!

 

 

 

 

 

 

5.4

Algebras of symmetric groups

 

 

 

 

75

 

5.4.5 The linear independence of

 

 

 

 

 

Ni Pi and

Pi Ni

 

The relationships expressed in Eq. (5.31) can be used to prove the very important

 

 

result that the set of algebra

elements,

 

Ni Pi ,

is linearly independent. First,

from

Eq. (5.30) we have seen that they are not zero, so we suppose there is a relation

 

 

 

 

 

 

i

a i Ni Pi

 

= 0.

 

 

(5.42)

We multiply Eq. (5.42) on the right, starting with the final one

 

 

 

 

 

Nf , and, because of

Eq. (5.31), we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a f Nf Pf Nf

= 0.

 

(5.43)

Therefore, either

a f

or Nf Pf Nf , or both must be 0. We observe, however, that

 

 

 

 

 

 

 

 

[[i

i ]]

 

(5.45)

 

 

 

 

[N[i Pi Ni ]]= Ni

2Pi

 

 

(5.44)

 

 

 

 

 

=

g

N

N P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= g N ,

 

 

 

(5.46)

where

g N is the

order

of the subgroup of

 

 

 

N, and this is true

for any

i . Thus,

Nf

Pf Nf is not zero and

a

f in Eq. (5.43) must be. Now that we know

a f 1

a f is zero,

we may multiply Eq. (5.42) on the right by

N1

Nf 1

, and see that

must also be

zero. Proceeding this way until we reach

 

, we see that all of the

a i

are zero, and

the result is proved.

 

 

 

 

 

 

 

 

 

 

 

Permutations are unitary operators as seen in Eq. (5.27). This tells us how to take the Hermitian conjugate of an element of the group algebra,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

(5.47)

 

 

 

x

π

x π π

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π 1 ,

 

 

(5.48)

 

 

 

 

=

x

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

(5.49)

 

 

 

 

=

x

 

 

 

 

 

 

 

 

 

 

1 π.

 

 

 

 

 

 

 

π

 

 

 

 

 

 

In passing we note that

N and P are Hermitian, since the coefficients are real and

 

 

equal for inverse permutations.

 

 

N P

 

 

 

 

 

 

=

In general

P N

 

 

but is its Hermitian conjugate, since (ρπ

)

i i is not equal to

i

i

 

π ρ. Therefore, it should be reasonably obvious that the

 

 

P N

operators are also

 

 

 

i i

 

linearly independent. We note that

an

alternative,

but

very

similar,

proof that all

 

P j ; j =

a i = 0 in Eq.

(5.42) could

be

constructed

by multiplying

on

the left

by

 

1, 2, . . . , f sequentially.

 

 

 

 

 

 

 

 

 

 

 

It is now fairly easy to see that we could form a new set of linearly independent

 

 

 

quantities

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x i Ni Pi ;

 

i = 1, 2, . . . , f,

 

(5.50)

Ni Pi x i ). As is probably
x i Ni Pi

76

5 Advanced methods for larger molecules

where

x i is any set

of elements of the algebra that do not result in

 

Corresponding results are true for right multiplication (i.e.,

 

 

not surprising there are parallel results for right or left multiplication on

 

important application of this result (for left multiplication) is an algebra element like

 

x i = ρPi , where

ρ is any operation of the group, with corresponding expressions

for the other cases.

Pi and

Pj differ only in being based upon a different arrangement

The operators

of the numbers in the standard tableau they are associated with. Therefore, there

Pj with the relation

exists a permutation,

πi j that will interconvert

Pi and

πi j Pj = Pi πi j ,

= 0.

Pi Ni . An

(5.51)

with a similar

expression

for

Ni and

Nj . The theorems of this section

can

thus

be stated in a different way. For example, we see that the quantities,

 

P1 N1 π1 j =

π1 j Pj Nj ,

satisfy the

definition of Eq. (5.50), and are thus linearly independent.

 

 

Three similar results pertain for the other three possible combinations of the ordering

 

 

of the products

of

P and

N on either

side of

the equation. Explicitly, for

one

of

these cases, we may write that the relation

 

 

 

 

 

 

 

 

i

P1

N1

π1 i a i = 0

 

(5.52)

implies that all

a i

= 0, with similar implications for the other cases.

 

 

5.4.6 Von Neumann’s theorem

Von Neumann proved a very useful theorem for our work (quoted by Rutherford[7]).

Using our notation it can be written

 

 

Px N = [P[x N]PN]

,

(5.53)

where

x is any element of the algebra and

N and P are based upon the same tableau.

 

A similar expression holds for

N x P.

 

 

 

5.4.7 Two Hermitian idempotents of the group algebra

 

 

We will choose arbitrarily to work with the first of the standard tableaux

 

5 of a given

partition. With this we can form the two

Hermitian

algebra elements

 

 

 

u = θ PNP

 

(5.54)

5 Any tableau would do, but we only need one. This choice serves.

 

 

 

 

5.4 Algebras of symmetric groups

 

 

 

 

 

 

 

 

77

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u = θ NPN,

 

 

 

 

 

(5.55)

where

θ and

θ

are real. We must work out what to set these values to so that

 

 

 

u

2 = u

and

u

2 = u .

 

 

 

 

 

 

 

 

 

 

 

 

f /g )NP or ( f /g )PN, g

= n

 

 

We stated at the end of Section 5.4.3 that (

 

 

 

 

 

 

 

 

 

 

 

!, will

serve as an idempotent element of the algebra associated with the partition upon

 

 

 

 

 

which they are based, although these are, of course, not Hermitian. This means that

 

 

 

 

 

 

 

 

 

 

NPNP =

g

 

NP.

 

 

 

 

 

(5.56)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

 

 

 

 

Thus, observing that

P2 = g PP, we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(PNP )2 = PNP2NP,

 

 

 

 

(5.57)

 

 

 

 

 

 

= g PPNPNP,

 

 

(5.58)

 

 

 

 

 

 

=

gg P

PNP,

 

 

 

 

(5.59)

 

 

 

 

 

 

f

 

 

 

 

where

g P is the order of the subgroup of the

 

 

 

f

 

 

 

P operator. Thus, we obtain

 

 

 

 

 

 

 

u

=

 

PNP

 

 

 

 

 

(5.60)

 

 

 

 

 

gg P

 

 

 

 

 

as an idempotent of the algebra that is Hermitian. A very similar analysis gives

 

 

 

 

 

 

 

 

 

 

u =

f

 

 

NPN,

 

 

 

 

 

(5.61)

 

 

 

 

gg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

where

g N is the order of the subgroup of the

 

 

 

 

 

 

 

 

 

 

N operator. Although portions of the

 

 

following analysis could be done with the original non-Hermitian Young idempo-

 

 

 

tents, the operators of Eqs. (5.60) and (5.61) are required near the end of the theory

 

 

and, indeed, simplify many of the intervening steps.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.8 A matrix basis for group algebras of symmetric groups

 

 

 

 

 

 

In

the

present

section

we will give a construction

of the matrix basis only for

 

 

the u

= θ PNP operator. The treatment for the other Hermitian operator above is

 

 

identical and may be supplied by the reader.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider now the quantities,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m i j = πi 1 uπ 1

j ,

 

 

 

 

 

 

 

 

 

 

(5.62)

 

 

 

 

=

(m

j i ),

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.63)

 

 

 

 

 

1 uπ

 

;

 

 

 

 

 

 

 

 

 

 

(5.64)

 

 

 

 

=

π

j

 

 

π

j =

π

1

j

,

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

78

 

 

 

 

 

5

 

Advanced methods for larger molecules

 

 

 

 

 

 

 

 

 

 

 

 

 

 

none of which is zero. Since u is based upon the first standard tableau, from now

 

 

 

 

 

 

 

on we suppress the “1” subscript in these equations. This requires us, however, to

 

 

 

 

 

 

 

use the inverse symbol, as seen. Now familiar methods are

 

easily

 

used

 

to show

 

 

 

 

 

 

 

that m

i j

=0 for all

 

i and

 

 

j . In fact, the above results show that the

 

 

 

 

 

m i j constitute

 

f 2 linearly independent elements of the group algebra that, because of Young’s

 

 

 

 

 

 

results, completely span the space associated with the irreducible representation

 

 

 

 

 

 

 

labeled with the partition. Thus, because of Eq. (5.38) we have found a complete

 

 

 

 

 

 

 

set of linearly independent elements of the whole group algebra.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now determine the multiplication rule for

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

i j and

m

 

kl ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

i j m

kl

= πi1 u π j πk1

u πl .

 

 

 

 

 

(5.65)

Examining the inner factors of this product, we see that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u π

j

π

1

u

=

θ

2

PNP

π

j

π 1

 

PNP

,

 

 

 

(5.66)

 

 

 

 

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ =

 

 

 

f

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.67)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gg

 

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We now apply Eq. (5.53) to some inner factors and obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

π

 

π 1

 

PN

 

 

 

 

 

π π 1

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

(5.68)

 

 

 

j

k

 

 

= π j

πk1

 

PNP PN,

 

 

 

 

 

(5.69)

 

 

 

 

 

 

 

 

 

 

 

=

 

P

 

 

 

j

 

 

k

 

PN PN

 

 

 

 

 

 

 

 

 

 

 

 

 

u π j

π

1

u

 

 

 

 

 

π j

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.70)

 

 

 

 

 

 

 

 

 

k

 

 

=

θ 2

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ

 

 

 

 

 

π j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

 

PNP PNPNP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= M

2 g

 

 

 

1

 

 

 

 

 

 

 

π

 

 

1

PNP PNPPNP

,

(5.71)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k jPu ,

 

 

 

 

 

k

 

 

(5.72)

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

P

1 πk1

PNPπ j .

 

 

 

 

 

(5.73)

 

 

 

 

 

 

 

 

 

M

 

k j

= g

 

 

 

 

 

Putting these transformations together,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

i j m

 

kl

 

= M

 

k j m

il .

 

 

 

 

 

 

 

(5.74)

All of the coefficients in

 

 

 

 

PNP are

 

real and

the

matrix

 

 

 

M

 

is thus real

symmetric

 

(and Hermitian). Since

the

 

 

 

 

 

 

 

m

i j

are

 

linearly independent,

 

 

 

 

M

 

must be nonsingular.

 

In addition,

P

 

PNP

]] is equal to 1, so the diagonal elements of

 

 

 

 

M

are all 1.

M

g 1

[[

 

 

 

 

 

 

 

is essentially an overlap matrix due to the non-orthogonality of the

 

 

 

 

 

 

 

 

 

m

i j .

 

We note that if the matrix

 

 

 

 

 

 

 

M

were the identity, the

 

 

 

 

 

 

m i j

would satisfy Eq. (5.20). An

 

orthogonalization transformation of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

may easily

be effected

by the

nonsingular

 

 

matrix

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N M N

 

=

I ,

 

 

 

 

 

 

 

 

(5.75)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4

Algebras of symmetric groups

79

as we saw in Section 1.4.2. It should be recalled that

 

N is not unique; added condi-

tions are required to make it so. We wish

 

 

m 11

to be unchanged by the transformation,

and an upper triangular

N will accomplish both of these goals. If we require all of

the diagonal elements of

N

also to

be positive, it becomes uniquely

determined.

Making the transformations we have

 

 

 

 

 

 

 

)i k N l j m kl ,

 

 

 

e i j

=

( N

(5.76)

 

 

 

kl

 

 

 

 

 

e i j e kl

= δ j k e il ,

 

(5.77)

 

 

e 11

= m 11

,

 

(5.78)

as desired. These

e i j s constitute a real

matrix

basis

for the symmetric

group and,

clearly, generate a real unitary representation through the use of Eq. (5.23).

5.4.9 Sandwich representations

The reader might ask: “Is there a parallel to Eq. (5.23) for the nonorthogonal matrix basis we have just described?” We answer this in the affirmative and show the results.

Clearly, we can define matrices

 

 

T(ρ )i j

= [ρ[m i j ],]

 

 

(5.79)

and it is seen that a normal unitary representation may be obtained from

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D (ρ )i j =

( N )i k T(ρ )kl N l j ,

 

 

(5.80)

 

 

 

kl

 

 

 

 

 

 

 

where we have used Eq. (5.76). The upshot of these considerations is that the

 

 

 

T(ρ )

matrices satisfy

 

 

 

 

 

 

 

 

 

 

 

 

T(ρ )M

1 T(π )

=

T(ρπ ),

 

 

(5.81)

 

 

 

 

 

 

 

 

 

 

and these have been called

 

sandwich

representations, because

of a fairly

obvious

 

analogy. In arriving at Eq. (5.81) we have used

 

 

 

 

 

 

 

 

 

 

 

N N = M

1 ,

 

 

 

(5.82)

which is a consequence of Eq. (5.75).

 

 

 

 

 

 

 

 

 

 

We may also derive a result analogous to Eq. (5.21),

 

 

 

 

 

 

 

 

 

 

1 )λ T(ρ )λ ( M

1 )λ m

 

 

 

ρ

=

( M

λ

,

(5.83)

 

 

 

ki

kl

l j

i j

 

 

λi j kl

where we have added a partition label to each of our matrices and summed over it.

80

5 Advanced methods for larger molecules

5.4.10 Group algebraic representation of the antisymmetrizer

As we have seen in Eq. (5.21), an element of the group may be written as a sum over the algebra basis. For the symmetric groups, this takes the form,

ρ =

 

 

D iλj (ρ)e iλj .

(5.84)

λi j

We wish to apply permutations, and the antisymmetrizer to products of spin-orbitals that provide a basis for a variational calculation. If each of these represents a pure spin state, the function may be factored into a spatial and a spin part. Therefore, the

whole product, , may be written as a product of a separate spatial function and a spin function. Each of these is, of course, a product of spatial or spin functions of

the individual particles,

where

is a product of orbitals and

 

= M s ,

 

 

 

 

(5.85)

 

M s is a sum of products of spin functions that

 

is an eigenfunction of the total spin. It should be emphasized that the spin function

 

 

 

 

has a definite

M

s

value, as indicated. If we apply a permutation to

 

 

 

, we are really

applying the permutation separately to the space and spin parts, and we write

 

 

 

 

 

 

 

 

 

 

 

 

ρ = ρr ρs M s ,

 

 

 

 

(5.86)

where

the

r or

s

subscripts indicate

permutations affecting spatial

or spin

func-

 

tions, respectively. Since we are defining permutations that affect only one type of

 

 

 

 

function, separate algebra elements also arise:

e λ

and

e λ

,s

. These considerations

 

 

 

 

 

 

 

 

i j ,r

 

i j

6 that is useful

for

provide us with a special representation of the antisymmetrizer

 

 

 

our purposes:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

(1) σρ ρr ρs

 

 

 

 

(5.87)

 

 

 

 

A =

 

 

 

 

 

 

 

 

 

 

g

 

 

 

 

 

 

 

 

 

 

 

ρ S n

 

 

 

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

 

 

 

 

= D iλj (ρ)e iλj ,r D

 

 

 

(5.88)

 

 

 

 

iλ j (ρ)e iλ j ,s

ρλi j λ i j

 

1

 

 

 

˜

 

 

 

 

 

 

 

 

(5.89)

=

 

 

 

 

e iλj ,r

e iλj ,s ,

 

 

 

 

 

 

 

 

λi j

f

λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where we have used Eq. (5.18) and the symbol for the conjugate partition.

 

 

 

 

 

 

In line with the last section we give a version of Eq. (5.89) using the non-

 

orthogonal matrix basis,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

( M

1 )λ m

 

 

( M

1 )λ m

˜

 

 

(5.90)

A =

 

 

 

λ

 

λ

,

 

 

 

 

 

 

 

il ,s

λi j kl fλ

i j

j k,r

 

kl

 

 

 

where we need not distinguish between the

 

 

 

 

 

 

 

M

1

matrices for conjugate partitions.

6 We use the antisymmetrizer in its idempotent form rather than that with the (

 

 

 

 

 

 

)1

prefactor.

 

 

 

 

 

n !

 

 

 

 

5.5

Antisymmetric eigenfunctions of the

 

 

 

 

spin

 

 

 

 

 

81

 

 

 

 

5.5 Antisymmetric eigenfunctions of the spin

 

 

 

 

 

 

 

 

 

 

 

 

In this section

we

investigate

the connections

between

the symmetric

groups

 

 

 

 

 

 

 

 

 

 

and spin eigenfunctions. We have briefly outlined properties of spin operators in

 

 

 

 

 

 

 

 

 

 

Section 4.1. The reader may wish to review the material there.

 

 

 

 

 

 

 

 

 

 

 

 

 

One of the important properties of all of the spin operators is that they are

 

 

 

 

 

 

 

 

symmetric.

The

 

 

total

vector spin

operator is

a sum

of

the

vector

operators

for

 

 

 

 

individual electrons

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

S i ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S =

 

 

 

 

 

 

 

 

 

 

(5.91)

 

 

 

 

 

 

 

 

 

i =1

 

 

 

 

 

 

 

 

 

 

 

 

 

indicating that the electrons are being treated

 

 

equivalently

 

 

in

these expressions.

 

 

 

 

 

 

 

This means

that every

 

 

 

π S n

must commute with

the

total vector

spin

operator.

 

 

 

 

Since all of the other operators,

 

 

 

S 2, raising, and lowering operators,

are algebraic

 

 

functions of the components of

 

 

S , they also commute with every permutation. We

 

 

 

 

use this result heavily below.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.1

Two simple eigenfunctions of the spin

 

 

 

 

 

 

 

 

 

 

 

Consider

an

n

electron system in a pure

spin state

 

 

 

S

. The

associated

partition

is

 

{n /2 + S , n

/2 S }, and the first standard tableau is

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

· · ·

n /2

S

· · ·

 

n /2

+

S

 

,

 

 

 

 

 

n /2 + S + 1

 

· · ·

n

 

 

 

 

 

 

 

 

where we have written the partition in terms of the

 

 

 

 

 

S quantum

number

we have

 

 

targeted. We consider also an array of individual spin functions with the same shape

 

 

 

 

 

 

 

 

 

 

and all

η1/2

in the first row and

η1/2 in the second

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

· · ·

α

· · ·

α

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β

· · ·

β

 

 

 

 

 

 

 

 

 

 

 

 

 

where we have used the common abbreviations

 

 

 

 

α = η1/2 and

 

 

β = η1/2 . Associat-

ing symbols in corresponding positions of these two graphical shapes generates a

 

 

 

 

 

 

 

 

 

 

product of

αs and

βs with specific particle labels,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= α(1) · · · α(n /2 + S )β(n

/2 + S

 

+ 1) · · · β(n

),

 

(5.92)

 

 

 

S z = M

S ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.93)

 

 

 

M

S = S .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.94)

If now we operate upon

 

 

 

with

N (corresponding to

 

{n

/2 + S , n /2 S }) we obtain

a function with

 

n

/2 S antisymmetric products of the [αβ

 

 

 

 

βα] sort,

 

N = [α(1)β (n /2 + S + 1) α(n

/2 + S

+ 1)β (1)] · · · α(n

/2 + S

).

(5.95)

82

 

 

 

 

5

Advanced methods for larger molecules

 

 

 

 

 

 

 

 

 

The spin raising operator (see Eq. (4.3)) may now be applied to this result, and we

 

 

 

 

 

obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S +N = N S + ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 0,

 

 

 

 

 

 

 

 

(5.96)

where we have used the commutation of

 

 

 

S + with all permutations. The following

 

 

 

argument indicates why the zero results. The terms of

 

 

 

 

 

 

S + give zero with each

 

α

encountered

but turn

each

 

β encountered

into

an

 

 

α. Thus

S + is n /2 S

terms

of products, each one of which has no more than

 

 

 

 

 

n

/2 S

1

β functions

in

it.

Considering how these would fit into the tableau shape, we see that there would

 

 

 

 

 

have to be, for each term, one column in the tableau that has an

 

 

 

 

 

α in

both

rows.

This column, with its corresponding factor from

 

 

 

 

 

N, would thus appear as

 

 

 

 

 

 

 

 

 

 

[I (i j )]α(i )α( j ),

 

 

 

 

 

 

which is clearly zero. Eq. (5.96) is the consequence.

S 2 because of Eq. (4.5),

 

 

 

 

 

Thus,

 

N is an eigenfunction of

 

 

 

 

 

 

 

 

 

 

 

 

 

S 2N = S

( S + 1) N ,

 

 

 

 

(5.97)

and has total spin quantum number

 

 

S

(also the

 

M

S

value for this function). Other

 

 

values of

 

M

S

are available with

S should they be needed.

 

 

 

 

 

 

We now investigate the behavior of

 

 

 

when we apply our two simple Hermitian

 

 

 

 

idempotents discussed earlier,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P N P

 

= θ PNP ,

 

 

 

 

 

(5.98)

 

 

 

 

 

 

 

 

 

= g P θ PN ,

 

 

 

 

 

(5.99)

 

 

 

 

 

 

 

N P N

 

= θ NPN .

 

 

 

 

(5.100)

Since

S

+ and

S z

both commute with

 

 

N

and

P

, both

P N P

and

N P N

are eigen-

functions of the

 

 

S 2 operator with total spin

 

 

S

and

M

S = S .

 

λ = {n /2 + S ,

Heretofore in this section we have been working with the partition

 

 

 

 

 

n /2 S

}, but references to it in the equations have been suppressed. We now write

 

 

 

 

 

λ

and

λ

. Applying the antisymmetrizer to the function of both space and

 

 

 

 

 

P N P

 

 

 

N P N

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

spin that contains

 

λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P N P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A PλN P =

 

1

e iλ˜j ,r e iλj ,s λP N P .

fλ

 

λ i j

 

 

If the antisymmetrizer has been conditioned (see Eqs. (5.75)–(5.78)) so that is θ PNPλ , we obtain

e iλj ,s λP N P

= δ1 j δλλ e iλ1 ,s λP N P ,

because of the orthogonality of the

e λ

for different

λs.

 

i j

 

 

(5.101)

e λ

11 ,s

(5.102)

5.5 Antisymmetric eigenfunctions of the spin 83

We make a small digression and note that the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spin-degeneracy problem

 

 

we have

alluded to before is evident in Eq. (5.102). It will be observed that

 

 

 

 

 

 

 

 

 

 

 

i

= 1, . . . , fλ

in the

index of

e λ

λ

, and

these

functions

are

linearly

 

independent

since

the

 

 

 

 

 

i 1,s

 

P N P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e iλj ,s

are. There are, thus,

 

fλ linearly independent spin eigenfunctions of eigenvalue

 

 

 

S ( S

+ 1). Each of these has

a full

complement

of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

S

values,

of

course. In

view

of Eq. (5.40) the number of spin functions increases rapidly with the number of

 

 

 

 

 

 

electrons. Ultimately, however, the dynamics of a system governs if many or few

 

 

 

 

 

 

 

 

 

of these are important.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Returning to our antisymmetrized function, we see it is now

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

i

 

˜

 

e iλ1,s λP N P

 

 

 

 

(5.103)

 

 

 

 

A P N P

 

 

=

 

 

e

iλ1, r

,

 

 

 

 

 

 

 

 

 

 

fλ

 

 

 

and we are in a position to examine its properties with regard to the Rayleigh

 

 

 

 

 

quotient.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Considering first the denominator, we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A P N P

|A P N P

= fλ2

i j

 

e

˜

 

 

 

 

 

 

˜

 

 

 

 

 

 

 

 

 

iλ1, r

e λj 1, r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

λ

 

λ

 

 

 

 

 

e

λ

 

λ

 

,

 

 

(5.104)

 

 

 

 

 

 

 

 

 

 

× 1

i 1,s

 

 

λ˜P N P

 

 

 

j 1,s

 

P N P

λ

λ

,

(5.105)

 

 

 

 

 

 

 

 

=

f

λ

e

11,

r

 

P N P

e

11,s

P N P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

since

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

˜

 

 

˜

 

 

 

 

=

 

e

˜

 

 

e

˜

 

 

 

 

 

 

 

(5.106)

 

 

 

 

iλ1, r e λj 1, r

 

 

1λi,r

λj 1, r ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

δ

 

 

 

 

 

 

 

˜

 

,

 

 

 

 

(5.107)

 

 

 

 

 

 

 

 

 

 

 

 

 

e λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with a

very similar

expression

for the

spin

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

11, r

 

the

 

 

 

 

 

 

integral. Since

the

 

Hamiltonian

of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESE commutes with all permutations and symmetric group algebra elements, the same reductions apply to the numerator, and we obtain

A P N P

|H |A P N P

= fλ1 H

e

˜

λP N P

11λ, r

 

 

 

 

 

 

This result should be carefully compared to that of Eq. (4.37), where there were two functions that have the same integral. Here we have

Our final expression for the Rayleigh quotient is

e

11λ,s λP N P

.

(5.108)

 

 

 

 

fλ of them.

7

 

E

=

 

A P N P

 

|H

 

|A P N P

 

,

(5.109)

A P N P

|A P N P

 

 

 

 

 

 

=

 

e

11λ

˜

 

 

 

 

 

 

 

 

 

 

 

 

 

|H

|e

11λ

 

.

 

 

(5.110)

 

 

 

 

˜

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 We may note in passing that the partition for three electrons in a doublet state is

 

 

 

 

 

{2,1} and

fλ for this is 2. That

is why we found two functions in our work in Chapter 4.

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете Химия