Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Drug Targeting Organ-Specific Strategies

.pdf
Скачиваний:
28
Добавлен:
15.08.2013
Размер:
3.94 Mб
Скачать

Contents XXIII

9.4Tumour Vasculature targeting Potentials: Extrapolation of Animal Studies

 

to the Human Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

250

9.5

Summary and Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . .

251

References . .

. . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

251

10

Phage Display Technology for Target Discovery in Drug Delivery Research

 

 

Ricardo Mutuberria, Jan-Willem Arends, Arjan W. Griffioen,

 

 

Hennie R. Hoogenboom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

255

10.1

Introduction . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

255

10.2

Phage Display Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

255

 

10.2.1

Introduction to the Technology . . . . . . . . . . . . . . . . . . . . .

255

 

10.2.2

Phage Display Libraries . . . . . . . . . . . . . . . . . . . . . . . . .

258

 

 

10.2.2.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .

258

 

 

10.2.2.2

Peptide Display . . . . . . . . . . . . . . . . . . . . . . . . .

259

 

 

10.2.2.3

Antibody Display . . . . . . . . . . . . . . . . . . . . . . . .

260

 

 

10.2.2.4

Protein Scaffolds . . . . . . . . . . . . . . . . . . . . . . . .

261

 

 

10.2.2.5 Engineering Proteins with Phage Libraries . . . . . . . . .

262

 

 

10.2.2.6

cDNA Expression Libraries . . . . . . . . . . . . . . . . . .

262

10.3

Generation of Ligands Amenable for Targeting . . . . . . . . . . . . . . . . .

263

 

10.3.1 Selection of Ligands to Defined Targets . . . . . . . . . . . . . . . . .

263

 

10.3.2 Phage Display for Target Identification . . . . . . . . . . . . . . . . .

264

 

 

10.3.2.1 In Vitro Selections on Complex Antigens . . . . . . . . . .

264

 

 

10.3.2.2

In Vivo Selections and Selections for Functional Activity .

266

10.4

Engineering and Optimization for Targeting . . . . . . . . . . . . . . . . . . .

266

10.5

Discovery of Novel Therapeutics Using Phage Display Technology . . . . . .

268

10.6

Conclusions . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

270

References . .

. . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

270

11

Development of Proteinaceous Drug Targeting Constructs Using Chemical

 

 

and Recombinant DNA Approaches

 

 

Robbert J. Kok, Sigridur A. Ásgeirsdóttir, Willem R. Verweij . . . . . . . . . .

275

11.1

Introduction . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

275

11.2

The Carrier . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

276

 

11.2.1

Albumin

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

277

 

11.2.2

Low Molecular Weight Proteins . . . . . . . . . . . . . . . . . . . . .

277

 

11.2.3

Monoclonal Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . .

278

 

11.2.4

Transferrin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

278

11.3

The Homing Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

279

 

11.3.1

Carbohydrate Ligands . . . . . . . . . . . . . . . . . . . . . . . . . .

280

 

11.3.2

Folate .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

281

 

11.3.3

Peptide Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

281

XXIV

Contents

 

 

 

11.3.4

Modifications of the Physicochemical Properties of the Protein . . .

282

11.4

The Active Drug

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

283

11.5

The Linkage Between Drug and Carrier . . . . . . . . . . . . . . . . . . . . .

285

 

11.5.1

Intracellular Degradation . . . . . . . . . . . . . . . . . . . . . . . . .

287

 

11.5.2

Extracellular Degradation . . . . . . . . . . . . . . . . . . . . . . . .

291

11.6

Recombinant DNA Approaches . . . . . . . . . . . . . . . . . . . . . . . . .

292

11.7

Recombinant DNA Expression Systems . . . . . . . . . . . . . . . . . . . . .

292

 

11.7.1 Heterologous Gene Expression in Escherichia coli . . . . . . . . . .

292

 

11.7.2

Fungal Expression Systems . . . . . . . . . . . . . . . . . . . . . . . .

293

 

11.7.3

Baculovirus Expression Systems . . . . . . . . . . . . . . . . . . . . .

294

 

11.7.4 Stable Transformations of Insect Cells . . . . . . . . . . . . . . . . .

295

 

11.7.5 Expression Using Mammalian Cells . . . . . . . . . . . . . . . . . . .

295

 

11.7.6

Expression Systems: Concluding Remarks . . . . . . . . . . . . . . .

295

11.8

Recombinant DNA Constructs . . . . . . . . . . . . . . . . . . . . . . . . . .

296

 

11.8.1

Antibody-based Constructs . . . . . . . . . . . . . . . . . . . . . . .

296

 

11.8.2

Receptor-targeted Constructs . . . . . . . . . . . . . . . . . . . . . .

300

 

 

11.8.2.1

Cytotoxins . . . . . . . . . . . . . . . . . . . . . . . . . . . .

300

 

 

11.8.2.2

Toxin-targeted Constructs . . . . . . . . . . . . . . . . . . .

300

 

 

11.8.2.3

TfR-directed Constructs . . . . . . . . . . . . . . . . . . . .

301

11.9

Recombinant Domains as Building Blocks for Drug Targeting Constructs . .

302

 

11.9.1

Targeting Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

302

 

11.9.2

Membrane Translocation Domain . . . . . . . . . . . . . . . . . . . .

303

 

11.9.3

Assembly Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

303

11.10

Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

304

References . .

. . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

304

12

Use of Human Tissue Slices in Drug Targeting Research

 

 

Peter Olinga, Geny M. M. Groothuis . . . . . . . . . . . . . . . . . . . . . . .

309

12.1

Introduction . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

309

12.2

Preparation of Liver Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

311

12.3

Incubation and Culture of Liver Slices . . . . . . . . . . . . . . . . . . . . . .

312

 

12.3.1

Incubation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . .

312

 

12.3.2 Evaluation of Incubation Systems . . . . . . . . . . . . . . . . . . . .

313

 

12.3.3 Incubation Systems for Human Liver Slices . . . . . . . . . . . . . .

316

 

12.3.4

Oxygenation and Culture Media for Liver Slice Incubation . . . . .

316

 

12.3.5 Pre-incubation of Liver Slices . . . . . . . . . . . . . . . . . . . . . .

317

12.4

Viability and Functionality of Liver Slices . . . . . . . . . . . . . . . . . . . .

317

12.5

In Vitro Transport Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

318

 

12.5.1

Transport in Hepatocytes . . . . . . . . . . . . . . . . . . . . . . . . .

318

 

12.5.2 Transport in Liver Slices . . . . . . . . . . . . . . . . . . . . . . . . .

319

12.6

The Use of Liver Slices in Drug Targeting Research . . . . . . . . . . . . . .

321

 

12.6.1 Distribution and Transport of Drug Targeting Devices . . . . . . . .

321

12.7

Efficacy Testing of the Drug Targeting Device in the Liver . . . . . . . . . . .

323

 

Contents

XXV

12.8.

Tissue Slices from Other Organs . . . . . . . . . . . . . . . . . . . . . . . . .

327

12.9

Summary and Future Possibilities . . . . . . . . . . . . . . . . . . . . . . . . .

327

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

328

13

Pharmacokinetic/Pharmacodynamic Modelling in Drug Targeting

 

 

Johannes H. Proost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

333

13.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

333

 

13.1.1 Drug Targeting and Effectiveness: The Role of Pharmacokinetics . .

333

 

13.1.2 Pro-drugs and Drug–Carrier Conjugates . . . . . . . . . . . . . . . .

334

 

13.1.3 Scope of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . .

335

13.2Pharmacokinetics and Pharmacodynamics, Modelling, Simulation, and

 

Data Analysis .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

335

 

13.2.1

Pharmacokinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

335

 

 

13.2.1.1

Pharmacokinetic Processes . . . . . . . . . . . . . . . . . .

335

 

 

13.2.1.2

Transport Mechanisms . . . . . . . . . . . . . . . . . . . . .

336

 

 

13.2.1.3

Perfusion and Permeability . . . . . . . . . . . . . . . . . .

336

 

 

13.2.1.4 Plasma Protein Binding and Tissue Binding . . . . . . . . .

337

 

13.2.2

Pharmacodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . .

337

 

13.2.3

Model and Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . .

337

 

13.2.4

Pharmacokinetic Models . . . . . . . . . . . . . . . . . . . . . . . . .

338

 

 

13.2.4.1

Compartmental Models . . . . . . . . . . . . . . . . . . . .

338

 

 

13.2.4.2

Physiologically-based Pharmacokinetic (PB-PK) Models .

340

 

 

13.2.4.3 Compartmental Models Versus Physiologically-based

 

 

 

 

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

343

 

 

13.2.4.4

Principles of Modelling . . . . . . . . . . . . . . . . . . . .

343

 

13.2.5

Pharmacodynamic Models . . . . . . . . . . . . . . . . . . . . . . . .

344

 

 

13.2.5.1

Sigmoid Emax Model . . . . . . . . . . . . . . . . . . . . . .

344

 

 

13.2.5.2

Growth/Kill Models . . . . . . . . . . . . . . . . . . . . . .

344

 

 

13.2.5.3

Empirical PK/PD Relationships . . . . . . . . . . . . . . .

345

 

13.2.6

Pharmacokinetic/Pharmacodynamic (PK/PD) Models . . . . . . . .

345

 

13.2.7

Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

346

 

13.2.8

Data Analysis by Modelling . . . . . . . . . . . . . . . . . . . . . . .

346

 

 

13.2.8.1

Model Building . . . . . . . . . . . . . . . . . . . . . . . . .

346

 

 

13.2.8.2 Defining the Objective Function . . . . . . . . . . . . . . .

347

 

 

13.2.8.3 Searching the Best-fitting Set of Parameters . . . . . . . . .

348

 

 

13.2.8.4 Identification of Model Parameters . . . . . . . . . . . . . .

348

 

 

13.2.8.5 Goodness-of-Fit . . . . . . . . . . . . . . . . . . . . . . . . .

349

 

 

13.2.8.6

Model Selection . . . . . . . . . . . . . . . . . . . . . . . .

350

13.3

Pharmacokinetic Models for Drug Targeting . . . . . . . . . . . . . . . . . .

351

 

13.3.1 Model of Stella and Himmelstein . . . . . . . . . . . . . . . . . . . .

351

 

 

13.3.1.1

Disposition of DC . . . . . . . . . . . . . . . . . . . . . . .

352

 

 

13.3.1.2 Delivery of the DC to the Target Site . . . . . . . . . . . . .

353

XXVI

Contents

 

 

 

13.3.1.3 Release or Activation of D at the Target Site . . . . . . . .

353

 

 

13.3.1.4 Removal of D from the Target Site . . . . . . . . . . . . . .

354

 

 

13.3.1.5 Release of D at Non-target Sites . . . . . . . . . . . . . . .

355

 

 

13.3.1.6 Disposition of D . . . . . . . . . . . . . . . . . . . . . . . .

355

 

13.3.2

Model of Hunt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

355

 

13.3.3

Model of Boddy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

357

 

13.3.4 Model of Rowland and McLachlan . . . . . . . . . . . . . . . . . . .

357

13.4

Measures of Effectiveness of Drug Targeting . . . . . . . . . . . . . . . . . .

357

 

13.4.1

Therapeutic Availability (TA) . . . . . . . . . . . . . . . . . . . . . .

358

 

13.4.2

Drug Targeting Index (DTI) . . . . . . . . . . . . . . . . . . . . . . .

358

 

13.4.3

Targeting Index (TI) . . . . . . . . . . . . . . . . . . . . . . . . . . .

359

13.5Evaluation of Effectiveness of Drug Targeting Using PK

 

and PK/PD Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

359

 

13.5.1 Effectiveness of an Ideal Carrier . . . . . . . . . . . . . . . . . . . . .

359

 

13.5.2 Implications of the DTI Concept . . . . . . . . . . . . . . . . . . . .

361

 

13.5.3 Drug Candidates for Effective Targeting . . . . . . . . . . . . . . . .

363

 

13.5.4 Limitations of PK and PK/PD Modelling . . . . . . . . . . . . . . . .

363

13.6

Examples of PK Modelling in Drug Targeting . . . . . . . . . . . . . . . . . .

364

 

13.6.1

In Vivo Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

364

 

13.6.2

In Vitro Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

365

 

13.6.3

Regional Drug Administration . . . . . . . . . . . . . . . . . . . . . .

365

 

13.6.4

Controlled Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . .

366

 

13.6.5

Pharmacokinetic Properties of Macromolecular Carrier Systems . .

366

13.7

Software for PK and PK/PD Modelling . . . . . . . . . . . . . . . . . . . . .

366

13.8

Perspectives and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . .

367

References . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

368

14Drug Targeting Strategy:

Scrutinize the Concepts Before Screening the Constructs

 

Dirk K. F. Meijer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

371

14.1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

371

14.2

Receptor-based drug targeting . . . . . . . . . . . . . . . . . . . . . . . . . .

372

14.3

Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

374

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

377

Drug Targeting Organ-Specific Strategies. Edited by G. Molema, D. K. F. Meijer Copyright © 2001 Wiley-VCH Verlag GmbH ISBNs: 3-527-29989-0 (Hardcover); 3-527-60006-X (Electronic)

Abbreviations and Acronyms

Aco

aconitylated (Chapter 4); aconitic acid (Chapter 11)

cis-Aco

cis-aconitic acid

ACE

angiotensin-converting enzyme

AD

Alzheimer’s disease

ADCC

antibody dependent cellular cytotoxicity

ADEPT

antibody-directed enzyme pro-drug therapy

ADP

adenosine diphosphate

AEA

polyvinylacetal diethylaminoacetate

AIA

antigen-induced arthritis

ALL

acute lymphoblastic leukaemia

AML

acute myeloid leukaemia

ALT

alanine transaminase

AMP

adenosine monophosphate

ANP

atrial natriuretic peptide

AOX

alcohol oxidase (promoter)

AP

alkaline phosphatase

AP-1

activator protein-1

APL

acylated poly lysine

APP

amyloid precursor protein

APC

antigen presenting cell

APS

aerodynamic particle sizer

AS-ODN

antisense oligodeoxynucleotide

AST

aspartate transaminase

ATP

adenosine triphosphate

AUC

area under the (plasma concentration-time) curve

AVP

arginine vasopressin

AZTMP

azidothymidine-monophosphate

BBB

blood-brain barrier

B-CSF-B

blood-cerebrospinal fluid barrier

BDL

bile duct ligation

BDNF

brain derived neurotrophic factor

BDO

bile duct occlusion

BMEC

bovine microvessel endothelial cell

BSA

bovine serum albumin

XXVIII Abbreviations and Acronyms

Bs(M)Ab

bispecific (monoclonal) antibody

BUI

brain uptake index

C

proportionality constant (Chapter 3); complement (Chapter 8);

 

(drug) carrier, any part of a drug-carrier conjugate which is not

 

the pharmacologically active moiety (Chapter 13)

Cp

plasma concentration

Css

drug concentration at steady state

CT

tissue concentration

CAM

chick chorio-allantoic membrane assay

CAT

catalase; chloramphenicol acetyl transferase (Chapter 3)

CBF

cerebral blood flow

CCA

cell cycle arrest

CD

cluster of differentiation

CDR

complementary determining region

CEA

carcinoembryonic antigen

CFC

chlorofluorocarbon

cfu

colony-forming units

CHO

Chinese hamster ovary cells

CL

clearance

CLuptake,app

apparent clearance uptake

CLuptake

clearance uptake

CLL

chronic lymphoblastic leukaemia

CMV

cytomegalovirus

CNS

central nervous system

COER

controlled onset extended release

COPD

chronic obstructive pulmonary disease

COS

African green monkey kidney cells

COX

cyclooxygenase

CPG2

pseudomonas carboxypeptidase-2

CSF

cerebrospinal fluid

CTDC

colon-targeted delivery capsule

CTL

cytotoxic T lymphocyte

CTLA-4

cytotoxic T lymphocyte associated protein-4

CVO

circumventricular organ

D

(active, free) drug, active form of the drug, not bound to drug

 

carrier

DA

aerodynamic particle diameter

DE

equivalent volume diameter

DAB

diphtheria toxin enzymatic A domain and binding B

 

domain

DC

dendritic cell (Chapter 1); drug-carrier conjugate, the conjugate

 

of a drug and a drug carrier (Chapter 13)

DDI

drug delivery index

 

Abbreviations and Acronyms XXIX

Dexa

dexamethasone

DIVEMA

divinyl ether and maleic anhydride copolymer

DOC system

dynamic organ culture system

DPI

dry powder inhaler

DSS

dextran sodium sulphate

DT

diphtheria toxin

DTH

delayed-type hypersensitivity

DTI

drug targeting index

DTPA

diethylenetriaminepenta acid

EC

energy charge

ECM

extracellular matrix

EF

edema factor

EF-2

elongation factor-2

EGF

epidermal growth factor

EGP-2

epithelial glycoprotein-2

ELISA

enzyme-linked immunosorbent assay

EMSA

electric mobility shift assay

EPOR

erythropoietin receptor

fp

plasma unbound fraction

Fab’

antibody fragment with antigen binding capacity

F(ab’)2

antibody fragment consisting of two Fab’

FACS

fluorescent activated cell sorting

FBP

folate-binding protein

FEV1

forced expiratory volume in 1 s

(a/b)FGF

(acidic/basic)fibroblast growth factor (is FGF-1/-2)

FIR

flow increase rate

Form

formaldehyde-treated

FPF

fine particle fraction

Fu(A)

function of the cross section of a flow constriction

Gal

galactose

GDNF

glial cell-line derived neurotrophic factor

GFP

green fluorescent protein

GFR

glomerular filtration rate

GGT

γ-glutamyl transpeptidase

GI

gastrointestinal

Glc

glucose

Gludopa

γ-glutamyl pro-drug of l-dopa

GOX

glucose oxidase

gp

glycoprotein

GR

glucocorticoid receptor

GRE

glucocorticoid responsive element

GRO

growth related protein

XXX Abbreviations and Acronyms

GSH

glutathione

γ-GTP

γ-glutamyl transpeptidase

HAMA

human anti-mouse antibody

HDL

high-density lipoprotein

HDMEC

human dermal microvascular endothelial cell

HFA

hydrofluoroalkane

HGF

hepatocyte growth factor

HIV

human immunodeficiency virus

HPMA

N(-2-hydroxypropyl)methacrylamide

HRP

horseradish peroxidase

HSA

human serum albumin

HSC

hepatic stellate cell

HUVEC

human umbilical vein endothelial cell

IBD

inflammatory bowel disease

ICAM

intercellular adhesion molecule

i.c.v.

intracerebroventricular

IFN

interferon

IGFII/M6P

insulin-like growth factor II/mannose-6-phosphate receptor

IgG

immunoglobulin

IgSF

immunoglobulin superfamily

IκB

inhibitory factor κB

IKK

IκB-kinase

IL

interleukin

IP-10

interferon γ-inducible protein 10

IPTG

isopropyl-β-D-thiogalactopyranoside

IT

immunotoxin

JAB

JAK binding protein

JAK

janus kinase

KC

Kupffer cell

km

Michaelis-Menten constant of transport

LACHSA

lactosylated HSA

LAK

lymphokine activated killer cells

LAT

large neutral amino acid transporter

LDH

lactate dehydrogenase

(ox)LDL

(oxidized) low-density lipoprotein

LF

lethal factor

LH-RH

luteinizing hormone releasing hormone

LMWP

low molecular weight protein

LPS

lipopolysaccharide

LU

lucigenin

 

Abbreviations and Acronyms XXXI

LRP

lung resistance related protein

LT

leukotriene

LZM

lysozyme

mAb/MAb

monoclonal antibody

MACS

magnetic activated cell sorting

Mal

maleylated (Chapter 4); maleic acid (Chapter 11)

Man

mannosylated (Chapter 4); mannose (Chapter 5)

MARCO

macrophage receptor with collagenous structure

MBP

maltose binding protein

MCP(-1)

monocyte chemotactic protein(-1)

(p)MDI

(pressurized) metered dose inhaler

MDR

multi-drug resistance

MHC

major histocompatibility complex

MIP

maximal inspiratory pressure (Chapter 3); macrophage inflam-

 

matory protein (–1α/β)

MLV-MTP-PE

multilamellar vesicles-muramyl tripeptide-phosphatidyletha-

 

nolamine

MMAD

mass median aerodynamic diameter

MMP

matrix metalloproteinase

MPEG

monomethoxypolyethyleneglycol

MPTP

1-methyl-4-phenylpyridinium

MRP

multi-drug resistance related protein

MSLI

multi stage liquid impinger

MTT

3[4,5-dimethyl-thiazole-2-yl]-2,5-diphenyltetrazolium bromide

MUC-1

mucin 1

Nap

naproxen

Na/Pi-2 co-transporter

sodium/phosphate co-transporter

NBD

4-nitrobenz-2-oxa-1,3-diazole

NCE

new chemical entity

NCS

neocarzinostatin

NFκB

nuclear factor κB

NGF

nerve growth factor

NHL

non-Hodgkin’s lymphoma

NIK

NFκB-inducible kinase

NK

natural killer cell

NLA

neutral avidin

NLS

nuclear localization sequence

NO

nitric oxide

NOx

nitrite and nitrate

iNOS

inducible NO synthase

NSAID

non steroidal anti-inflammatory drug

ODN

oligodeoxynucleotide

XXXII Abbreviations and Acronyms

OROS-CT

oral osmotic system for colon targeting

OX26-NLA/SA

conjugate of anti-transferrin receptor antibody OX26 and

 

neutral avidin/streptavidin

PA

protective antigen

PAF

platelet activating factor

PB-PK

physiologically-based pharmacokinetic (modelling/models)

PBC

primary biliary cirrhosis

PBMC

peripheral blood mononuclear cell

PC

parenchymal cell/hepatocyte

PCNA

proliferating cell nuclear antigen

PD

Parkinson’s disease (Chapter 2); pharmacodynamics (Chapter

 

13)

PDGF

platelet-derived growth factor

PDTC

pyrrolidine dithiocarbamate

PE(40)

Pseudomonas exotoxin (amino acid 1–40)

PECAM

platelet endothelial cell adhesion molecule

PEF

peak expiratory flow rate

PEG

polyethylene glycol

PET

positron emission tomography

PG(E2)

prostaglandin (E2)

PGA

poly-glutamic acid

P-gp

P-glycoprotein

PIFR

peak inspiratory flow rate

PK

pharmacokinetics

PKC

protein kinase C

PK/PD

pharmacokinetic/pharmacodynamic

PMN

polymorphonuclear cell

pro-drug

inactive form of the drug, which is converted within the body to

 

the active drug

PS

phosphatidylserine

PS-product

permeability surface area product

PSC

primary sclerosing cholangitis

Qr

renal plasma flow rate

RE

external resistance (to airflow)

RI

internal resistance (to airflow)

RTOT

total resistance (to airflow)

RA

rheumatoid arthritis

RANTES

regulated upon activation, normal T-cell expressed and secreted

RB

Rhodamine B

Re

Reynolds number

RES

reticuloendothelial system

RGD

Arg-Gly-Asp

Соседние файлы в предмете Химия