Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ivchenko_bookreg

.pdf
Скачиваний:
268
Добавлен:
23.05.2015
Размер:
7.3 Mб
Скачать

References of Chapter 8

421

References of Chapter 8

8.1E.L. Ivchenko, G.E. Pikus: Pis’ma Zh. Eksp. Teor. Fiz. 27, 640 (1978) [JETP Lett. 27, 604 (1978)].

8.2V.I. Belinicher: Phys. Lett. A 66, 213 (1978).

8.3V.I. Belinicher, B.I. Sturman: Usp. Fiz. Nauk 130, 415 (1980) [Sov. Phys. Usp. 23, 199 (1980)].

8.4B.I. Sturman, V.M. Fridkin: The Photovoltaic and Photorefractive E ects in Non-Centrosymmetric Materials (Gordon and Breach, New York, 1992).

8.5V.M. Asnin, A.A. Bakun, A.M. Danishevskii, E.L. Ivchenko, G.E. Pikus, A.A. Rogachev: Pis’ma Zh. Eksp. Teor. Fiz. 28, 80 (1978); Solid State Commun. 30, 565 (1979).

8.6N.S. Averkiev, V.M. Asnin, A.A. Bakun, A.M. Danishevskii, E.L. Ivchenko, G.E. Pikus, A.A. Rogachev: Fiz. Tekh. Poluprovodn. 18, 639 (1984); ibid 18, 648 (1984).

8.7S.D. Ganichev, H. Ketterl, W. Prettl, E.L. Ivchenko, L.E. Vorobjev: Appl. Phys. Lett. 77, 3146 (2000).

8.8S.D. Ganichev, E.L. Ivchenko, S.N. Danilov, J. Eroms, W. Wegscheider,

D.Weiss, W. Prettl: Phys. Rev. Lett. 86, 4358 (2001).

8.9S.D. Ganichev, U. R¨ossler, W. Prettl, E.L. Ivchenko, V.V. Bel’kov, R. Neumann, K. Brunner, G. Abstreiter: Phys. Rev. B 66, 75328 (2002).

8.10S.D. Ganichev, W. Prettl: J. Phys.: Condens. Matter 15, 935 (2003).

8.11L.E. Golub: Physica E 17, 342 (2003); Phys. Rev. B 67, 235320 (2003).

8.12S.D. Ganichev, V.V. Bel’kov, Petra Schneider, E.L. Ivchenko, S.A. Tarasenko,

W.Wegscheider, D. Weiss, D. Schuh, E.V. Beregulin, W. Prettl: Phys. Rev.

B68, 35319 (2003).

8.13E. L. Ivchenko, Yu.B. Lyanda-Geller, G.E. Pikus: JETP Lett. 50, 175 (1989); Zh. Eksp. Teor. Fiz. 98, 989 (1990) [Sov. Phys. JETP 71, 550 (1990)].

8.14S.D. Ganichev, E.L. Ivchenko, V.V. Bel’kov, S.A. Tarasenko, M. Sollinger,

D.Weiss, W. Wegscheider, W. Prettl: Nature 417, 153 (2002).

8.15N.S. Averkiev, M.I. D’yakonov: Sov. Phys. Semicond. 17, 395 (1983).

8.16H.E.M. Barlow: Proc. IRE 46, 1411 (1958).

8.17A.M. Danishevskii, A.A. Kastal’skii, S.M. Ryvkin, I.D. Yaroshetskii: Zh. Eksp. Teor. Fiz. 58, 544 (1970) [Sov. Phys. JETP 31, 292 (1970)].

8.18A.F. Gibson, M.F. Kimmit, A.C. Walker: Appl. Phys. Lett. 17, 75 (1970).

8.19F.T. Vasko: Fiz. Tekh. Poluprovodn. 19, 1319 (1985) [Sov. Phys. Semicond. 19, 808 (1985)].

8.20S. Luryi: Phys. Rev. Lett. 58, 2263 (1987).

8.21A.A. Grinberg, S. Luryi: Phys. Rev. B 38, 87 (1988).

8.22A.D. Wieck, H. Sigg, K. Ploog: Phys. Rev. Lett. 64, 463 (1990).

8.23S. Graf, H. Sigg, K. K¨ohler, W. B¨achtold: Phys. Rev. B 62, 10301 (2000).

8.24A.M. Glass, D. von der Linde, T.J. Negran: Appl. Phys. Lett. 25, 233 (1974).

8.25A.M. Glass, D. von der Linde, D.H. Auston, T.J. Negran: J. Electr. Mater. 4, 915 (1975).

8.26K.H. Herrmann, R. Vogel: Proc. XI Int. Conf. Phys. Semicond, Warsaw, Poland, 1972 (Elsevier, Amsterdam, 1972) p. 870.

8.27C.R. Hammond, J.R. Jenkins, C.R. Stanley: Optoelectronics 4, 189 (1972).

8.28A.V. Andrianov, E.L. Ivchenko, G.E. Pikus, R.Ya. Rasulov, I.D. Yaroshetskii: Zh. Eksp. Teor. Fiz. 81, 2080 (1981) [Sov. Phys. JETP 54, 1105 (1981)].

422 References

8.29N. Kristo el, A. Gulbis: Izv. A.N. Est. SSR 28, 268 (1979).

8.30R. von Baltz, W. Kraut: Phys. Lett. A 79, 364 (1980).

8.31V.I. Belinicher, E.L. Ivchenko, B.I. Sturman: Zh. Eksp. Teor. Fiz. 83, 649 (1982) [Sov. Phys. JETP 56, 359 (1982)].

8.32E.L. Ivchenko, Yu.B. Lyanda-Geller, G.E. Pikus: Fiz. Tekh. Poluprovodn. 18, 93 (1984) [Sov. Phys. Semicond. 18, 55 (1984)].

8.33F. Goos, H. H¨anchen: Ann. Phys. Lpz. (6) 1, 333 (1947); F. Goos, H. Lindberg- H¨anchen: Ann. Phys. Lpz. (6) 5, 251 (1949).

8.34H.K.V. Lotsch: J. Opt. Soc. Am. 58, 551 (1968).

8.35H.K.V. Lotsch: Optik 32, 116, 189, 299 and 553 (1970/71) .

8.36F. Capasso, S. Luryi, W.T. Tzang, C.G. Bethea, B.F. Levine: Phys. Rev. Lett. 51, 2318 (1983).

8.37F.G. Pikus: Fiz. Tekh. Poluprovodn. 22, 940 (1988) [Sov. Phys. Semicond. 22, 594 (1988)].

8.38C. Sch¨onbein, H. Schneider, G. Bihlmann, K. Schwarz, P. Koidl: Appl. Phys. Lett. 68, 973 (1995).

8.39H. Schneider, S. Ehret, C. Sch¨onbein, K. Schwarz, G. Bihlmann, J. Fleissner,

G.Rr¨ankle: Superlatt. Microstruct. 23, 1289 (1998).

8.40S.D. Ganichev, S.N. Danilov, V.V. Bel’kov, E.L. Ivchenko, M. Bichler,

W.Wegscheider, D. Weiss, W. Prettl: Phys. Rev. Lett. 88, 057401 (2002).

8.41Petra Schneider, S.D. Ganichev, J. Kainz, U. R¨ossler, W. Wegscheider, D. Weiss, W. Prettl, V.V. Bel’kov, L.E. Golub, D. Schuh: phys. stat. sol. (b) 238, 533 (2003).

8.42E.L. Ivchenko, B. Spivak: Phys. Rev. B 66, 155404 (2002); Physica E 17, 376 (2003).

8.43R.R. Schlitler, J.W. Seo, J.K. Gimzewski, C. Dunkan, M.S.M. Saifullmah, M.E. Welland: Science 292, 1136 (2001).

8.44P. Kr´al, E.J. Mele, D. Tom´anek: Phys. Rev. Lett. 85, 1512 (2000).

8.45A.P. Dmitriev, S.A. Emel’yanov, S.V. Ivanov, P.S. Kop’ev, Ya.V. Terent’ev, I.D. Yaroshetskii: Pis’ma Zh. Eksp. Teor. Fiz. 54, 279 (1991) [JETP Lett. 54, (1991)].

8.46Yu.A. Aleshchenko, I.D. Voronova, S.P. Grishechkina, V.V. Kapaev, Yu.V. Kopaev, I.V. Kucherenko, V.I. Kadushkin, S.I. Fomichev: Pis’ma Zh. Eksp. Teor. Fiz. 58, 377 (1993) [JETP Lett. 58, (1993)].

8.47E.L. Ivchenko, G.E. Pikus: Izv. Akad. Nauk SSSR (ser. fizich.) 12, 2369 (1983) [Bull. Acad. Sci. of the USSR, Phys. Ser., 47, 81 (1983)].

8.48O.V. Kibis: Phys. Solid State 43, 2336 (2001).

8.49G.L.J.A. Rikken, E. Raupach, V. Krsti¨c, S. Roth: Mol. Phys. 100, 1155 (2002).

8.50S. Tasaki, K. Maekawa, T. Yamabe: Phys. Rev. B 57, 9301 (1998).

8.51G.L.J.A. Rikken, E. Raupach: Nature 390, 493 (1997).

8.52G.L.J.A. Rikken, E. Raupach: Phys. Rev. E 58, 5081 (1998).

8.53E.F. Gross, B.P. Zakharchenya, O.V. Konstantinov: Fiz. Tverd. Tela 3, 305 (1961).

8.54L.E. Vorobjev, E.L. Ivchenko, G.E. Pikus, I.I. Farbshtein, V.A. Shalygin, A.V. Shturbin: Pis’ma Zh. Eksp. Teor. Fiz. 29, 485 (1979) [JETP Lett. 29, 441 (1979)].

Index

absorption

absorbance, 94, 172, 190, 371 bleaching, 351

spin sensitive, 388 circular dichroism, 395 interminiband, 183 magneto-chiral, 396

magnetoabsorption, 163, 331 saturation, 388

selection rules, 68 two-photon, 326 biexciton, 333

in quantum wires, 331 selection rules, 330

biexciton, 81, 332 binding energy, 82 in microcavity, 352 trial function, 82

two-photon excitation, 333 Bloch oscillations, 151

Bloch theorem, 58, 103 Bohr radius, 72, 90, 119, 237

Boltzmann or kinetic equation, 207, 215, 229, 236

approximation of optimal hopping, 207

for spin-density matrix, 230, 378 exciton, 266

Born approximation, 222 Bose-Einstein condensation, 78 boundary conditions, 17, 19, 26

lh-hh mixing, 28 Bastard, 17, 197

for two-particle envelope, 72 in the Kane model, 31 Kronig-Penney, 197

lattice displacement, 63

Brewster angle, 178

Brillouin function, 167

carbon nanotube, 1, 8, 38 armchair, 42

chiral, 392 multiwalled, 8 singlewalled, 8 zigzag, 41

chirality e ects, 391 cleaved edge overgrowth, 11

collision integral, 207, 230, 236, 379 exchange contribution, 233 simple model, 380

cyclotron frequency, 47, 159, 232, 331 cyclotron resonance, 193, 195

cyclotron mass, 196 in SLs, 197

optically detected, 197

deformation potential constant, 26, 376 Dember e ect, 361

density of states

in magnetic field, 159 localized-exciton, 205 reduced, 67, 186

in nanotubes, 393 square-root singularity, 187

dielectric function, 60, 87, 174, 299 in infrared region, 199

in MQWs, 105 single-pole, 96 two-pole, 105

dielectric tensor, 61, 199 in MQWs, 117

in SL, 202 di raction, 133, 137 dispersion equation

424 Index

electron in a SL, 59 exciton polariton

in MQWs, 103 microcavity, 346, 349 QD lattice, 133

resonant Bragg structures, 108 extraordinary wave, 200 intersubband plasmon, 302 ordinary wave, 200

distributed Bragg reflector (DBR), 343, 353

reflection coe cient, 345 Drude model, 190

e ective g factor, 31, 227, 238, 243, 296, 315, 376

anisotropy, 241, 246, 248 in-plane, 246

exciton, 165, 269 heavy-hole, 246, 260

in bulk semiconductor, 239 tensor, 227, 238

e ective Hamiltonian, 20, 71 N -band model, 30

Bir-Pikus Hamiltonian, 25, 50 heavy-light hole mixing, 154 in graphene, 39

in magnetic field, 160, 239 Luttinger Hamiltonian, 23, 117, 188

invariant form, 24

isotropic or spherical approximation, 26, 44

spin-dependent, 52, 53, 365

bulk inversion asymmetry, 53, 231, 320, 369

exciton, 254 in QWRs, 57

interface inversion asymmetry, 54 pseudospin, 270, 360

structure inversion asymmetry, 53, 231, 369

Zeeman, 26, 238, 242, 259, 270 trion, 83

e ective-mass approximation, 16, 252 in nanotubes, 40

in QDs, 42

in SLs, 59

intersubband matrix element, 188 electron spin resonance (ESR), 238

ESR frequency, 238 electron-electron collisions, 232, 234 electron-electron interaction, 233, 303 electron-exciton interaction, 224

exchange processes, 223 three-body Hamiltonian, 222

electron-phonon interaction, 192, 312, 374

deformation-potential mechanism, 313, 376, 395

polar-optical phonons, 192 envelope-function theory, 15 exchange interaction, 228, 317, 360

sp-d, 166

0D exciton, 254 electron-hole, 237, 251

long-range, 253, 261, 268 short-range, 253, 262

exchange collision processes, 222 exchange-correlation e ects, 175 flip-stop-like, 319

in QDs, 262, 276 exciton, 70, 72, 77

binding energy or Rydberg, 72, 75 in QWRs, 80

in QWs, 73

bound to neutral acceptor, 317 charge-transfer, 70

damping rate nonradiative, 90, 93

radiative, 93, 97, 115, 130, 135, 137 diamagnetic, 159

dielectric polarization, 85, 90, 96, 131 envelope wave function, 71, 72

in QWRs, 79

in QWs, 73, 323 in SLs, 106

trial function, 74, 75, 78, 106 excitation energy, 72, 74, 80, 205 Frenkel, 70, 265

in type-II SLs, 78, 257 interwell, 78

localized, 80, 205, 220, 317, 319 mobility edge, 205

mechanical, 72 mixed 2D-3D, 78

radiative lifetime, 92, 95, 204 reduced e ective mass, 72

translational mass, 72 Wannier-Mott, 70

exciton polariton, 79, 87 in periodic MQWs, 102

finite, 113

resonant Bragg structures, 107 short-period, 104

in quantum microcavity, 344, 348 two-oscillator model, 87, 103

Fermi’s golden rule, 95, 171, 191, 385 fine structure of excitons, 251, 254

in nanocrystals, 260

in type-II SLs, 257, 273

anisotropic exchange splitting, 259 localized, 255

at rectangular island, 255 singlet-triplet splitting, 261

long-range, 263 four-wave mixing, 326

biexcitonic nonlinearity, 336, 338, 353

degenerate, 334

in microcavity, 351 resonant Bragg MQWs, 338 spectrally resolved, 353 time-integrated, 337

Goos-H¨anchen e ect, 386 graphene, 8, 38

Green function, 129, 130

Hanle e ect, 227, 247 heterojunction

double, 3, 122 single, 2, 122 type-I, 2

type-II, 3, 78, 279 type-III, 3

in-plane anisotropy, 116, 122, 155, 277 electron spin splitting, 55, 320 hidden, 282

inhomogeneous broadening, 99, 176, 371

acceptor levels, 251 excitonic transition, 337 Gaussian, 215, 372 Lorentzian, 178

Index 425

Voigt, 178

interband transitions, 21, 68, 123, 328, 386

selection rules, 69, 226 intersubband transitions, 21, 174, 388

in p-type QWs, 188 in MQWs, 178

in nanotubes, 393 intersubband resonance, 176 selection rules, 172

intrasubband transitions, 21 assisted by phonons, 192, 374 defect-assisted, 191

Kane model, 15, 30, 177, 242 Kramers degeneracy, 52

Kramers-conjugate states, 238

Landau levels, 159, 163, 195, 331 in SLs, 197

Larmor frequency, 227, 376, 380 exciton, 269

level-anticrossing e ect, 260 light scattering, 287

Brillouin, 287, 297, 307 by free carriers, 291

charge-density fluctuations, 293 spin-density fluctuations, 295

double resonance, 320 2s-1s, 323

Raman, 307

confined optical phonon, 313 folded acoustic phonons, 305 intersubband excitations, 300, 302 optical phonons, 297

spin-flip, 242, 315 Rayleigh, 128, 291

Stokes or anti-Stokes, 289, 306, 312 linear-circular dichroism, 333 longitudinal-transverse splitting, 86,

90, 106, 253, 263 in bulk materials, 237 in QWs, 254

in SLs, 106 Lorentz force, 232 Lorentzian pulse, 334

many-valley semiconductors, 181 material relation, 60, 139, 289

426 Index

Maxwell equations, 60, 128 miniband, 1, 4, 59, 147, 171, 183, 197

acoustic, 64

nanocrystal, 10, 260 hexagonal, 264

non-Markovian processes, 211 nonparabolicity, 30

hole subbands, 27, 28, 186, 373 in microcavity, 354

in the Kane model, 34

optical alignment exciton, 260, 265

in QDs, 273

of photoelectron momenta, 249 optical orientation, 225, 379, 381

exciton, 265, 275 hot electrons, 249 in QDs, 274

optically detected magnetic resonance (ODMR), 197, 242, 258

orientation-to-alignment conversion, 271, 273

phonon acoustic

dispersion, 63, 64 folded, 1, 63, 305

in nanocrystals, 308 longitudinal, 63

interface mode, 62, 314 optical, 62, 299

confined, 1, 310, 311 surface, 62

phonon-polariton, 137 plasmon-phonon, 299 photoelastic coe cient, 305

photogalvanic e ects (PGE), 325, 361 circular, 361

in nanotubes, 392 interband, 367 intersubband, 370 intrasubband, 373

linear, 361, 384 ballistic, 385, 387 in nanotubes, 394 shift, 385, 387

magneto-chiral, 394

photon drag, 362, 381 in nanotubes, 394

saturation, 390 spin-galvanic, 362, 374

kinetic mechanism, 376, 381 relaxational mechanism, 378

photoluminescence (PL), 203, 290 band-to-band, 203 bound-to-free, 204

exciton, 204, 270 hot, 204, 248

micro-PL spectra, 217

PL excitation spectra, 203, 329, 334 spectral intensity, 208 time-integrated, 213

time-resolved, 210 photomagnetoelectric e ect, 361 photonic band gap, 115 photonic crystal, 1, 128 plasmon, 294, 304

acoustical, 304 in QWRs, 304

intersubband, 175, 302 plasmon-phonon mode, 299

pseudopotential method or model, 19, 264

pseudospin, 267, 270, 358

quantum beats, 247, 258, 350 quantum dot (QD), 1, 9

cone-shaped, 47 lens-shaped, 48 parabolic, 45 pyramid, 51, 258 rectangular, 42 self-organized, 10 spherical, 43, 243 vertical, 45

vertically coupled, 11 quantum microcavity, 1, 324, 344

cylindrical, 351 polariton-polariton scattering

magic angle, 355

Rabi splitting, 345, 348, 350 strong-coupling regime, 345, 348, 349 two-oscillatory model, 344 weak-coupling regime, 345

quantum well (QW), 1, 16 double, 1

multiple (MQWs), 1, 4 anti-Bragg, 108, 110 near-Bragg, 109 resonant Bragg, 107, 115

semimagnetic, 167 single, 1, 3

quantum wire (QWR), 1, 6 cylindrical, 33, 243 grating of QWRs, 137 H-shaped, 37

L-shaped, 37

quantum well wire (QWW), 7 rectangular, 34, 245 T-shaped, 8, 36

V-shaped, 7

quantum-confined Pockels e ect, 153, 155, 157

quantum-confined Stark e ect, 144, 146, 157

reflection

a stack of N QWs, 110

resonant Bragg structure, 112, 115 arrays of QWRs and QDs, 128

2D QD lattices, 136 Fresnel coe cient, 96 in magnetic field, 163

magneto-optical layers, 168 infrared, 199

polar Kerr e ect, 164 rotation angle, 165

quantum microcavity, 346 single QW, 88, 92

scattering cross-section, 291, 294 free carriers, 291 intersubband excitations, 300 phonons, 296, 299

spin-flip, 315

scattering or Raman tensor, 312, 313 second-harmonic generation, 325, 339

excitonic e ects, 340 in cascade laser, 343

intersubband transitions, 341 semimagnetic semiconductor, 165, 321

paramagnetic phase, 167 spin-glass phase, 167 type-I–type-II transition, 167

Index 427

Snellius relation, 346

spin relaxation mechanisms, 228 Bir-Aronov-Pikus, 228, 237 D’yakonov-Perel’, 228, 232, 268, 380 Elliot-Yafet, 228, 238

interaction with nuclei, 237 spin-density matrix, 227, 229, 368

exciton, 265

spin-orbit interaction or coupling, 22, 53, 54, 265

Stokes parameters, 163 Stokes shift, 205, 216 subband, 1, 4, 17, 171, 197

metal-oxide-semiconductor, 183 valence, 29, 186

superlattice (SL), 1, 4 compositional, 5 Fibonacci, 6

Stark ladder, 147, 321

transition from type-I to type-II, 78 two-dimensional, 137

superradiant mode, 115, 137, 338 susceptibility, 325

electronic, 293 nonlocal, 96 second-harmonic, 340

tight-binding approximation, 185 tight-binding model or method, 28, 263

atomic orbital, 280 Hamiltonian, 280 planar orbital, 280

time inversion, 27, 40, 41, 368, 376 transfer matrix, 58, 102

eigenvalues, 110 through a SL period, 58 unimodularity, 59

transmission

quantum microcavity, 346 resonant Bragg structure, 112 single QW, 92

trion, 82, 98, 275 binding energy, 83 localized, 220 trial function, 83

Wannier-Stark localization, 147

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]