Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Калин Физическое материаловедение Том 5 2008

.pdf
Скачиваний:
1037
Добавлен:
16.08.2013
Размер:
8.51 Mб
Скачать

– магнитная проницаемость; химический потенциал

– коэффициент Пуассона; частота;– удельное электросопротивление;

плотность

– число столкновений; степень аморфности

s макроскопическое сечение рассеяния

– удельная электропроводность; поверхностное натяжение, поверхностная энергия; сопротивление деформации

а сечение захвата нейтроновт – предел текучестиу – упругие напряжения

m – среднее напряжение

R – предел выносливости при несимметричном цикле нагружения

TT – термическое напряжение

в – временное сопротивление; предел прочности

дл – предел длительной прочностипол – предел ползучестипр – приведенное напряжение

пц – предел пропорциональности0,2 – предел текучести–1 – предел выносливости при сим-

метричном цикле нагружения–1,N – предел выносливости – циклическое напряжение, выдерживаемое материалом более 107 раз1,N – предел выносливости материала при многократном нагружении1 предел выносливости материала в условиях термической

усталости

σTτр – предел длительной прочности

[ ] – допускаемое напряжениесдв – сопротивление сдвигу

11

ср – сопротивление срезу φ – текучесть

Фi – радиационное воздействие

– магнитная восприимчивость; электроотрицательность

– относительное сужение АДС – аргоно-дуговая сварка

АМП – аморфная металлическая пленка

АМС – аморфный металлический сплав

БЗП – быстрозакаленные припои БПИ ближний порядок искажений ВВЭР – водоводяной энергетический

реактор ВКУ – внутрикорпусные устройства

ВТСП – высокотемпературный сверхпроводник

ДСС – диаграмма состояния системы ДТА – дифференциальный терми-

ческий анализ ИТЯР – исследовательский термо-

ядерный реактор ИЭТ – импульсный электрический

ток КПД – коэффициент полезного дей-

ствия КПЭ – концентрированные потоки

энергии

КСU ударная вязкость, определенная на образце с концентратором напряжений типа U

КСТ – ударная вязкость, определенная на образце с трещиной

КЭ – конструктивный элемент ЛЭП – линия электропередачи МПЭ – магнитопластический эффект

МТМО – многократная термомеханическая обработка

ОПФ – обратная полюсная фигура ОЯТ – отработанноеядерное топливо ППФ – прямая полюсная фигура ПРН – полная решетка наложения

РБМК – реактор большой мощности канальный

РЗМ – редкоземельные элементы РПТ – радиационно-пучковые техно-

логии РСУ – решетка совпадающих узлов

САП – спеченный алюминиевый порошок

СВП – стержневые выгорающие поглотители

СВС – самораспространяющийся высокотемпературный синтез СМП – сильное магнитной поле СПД – сверхпластическая деформа-

ция СПУТС случайная плотная упаков-

ка твердых сфер СРТУ – скорость роста трещины

усталости при заданном размахе интенсивности напряжений K Структурно-фазовые состояния ста-

лей:

Б – бейнит; М – мартенсит; П – перлит; С – сорбит;

Т– троостит; Ф – феррит;

Ц– цементит

СУ – сверхупругость

СУЗ – система управления и защиты СФС – структурно-фазовое состоя-

ние

CVD – химическое осаждение из пара

ТВС – тепловыделяющая сборка ТВЭЛ – тепловыделяющий элемент ТКЛР – температурный коэффициент

линейного расширения ТО – термическая обработка ТЯР – термоядерный реактор

УДП – ультрадисперсные порошки ФГМ – функционально-градиентные

материалы ФРО – функция распределения ори-

ентаций ХТО – химико-термическая обработ-

ка ЭЛП – электронно-лучевой переплав

ЭЛС – электронно-лучевая сварка ЭПФ – эффект памяти формы ЭПЭ – коэффициент электропла-

стичности ЯГР – ядерный гамма-резонанс

ЯМР – ядерный магнитный резонанс ЯЭУ – ядерно-энергетическая уста-

новка

________

12

Предисловие к тому 5

Том 5 содержит учебный материал по принципам разработки новых материалов, изложенных в главах «Принципы выбора и разработки материалов с заданными свойствами», «Высокочистые вещества, металлы и монокристаллы», «Методы получения и обработки материалов», «Стабилизация структурно-фазового состояния материалов», «Аморфные металлические сплавы», «Наноструктурные материалы», «Функциональные материалы».

Вглаве 16 (авт.: профессоры Б.А. Калин, Я.И. Штромбах) рассмотрены основные этапы выбора и/или создания материала с заданными свойствами. Показано, как на основе анализа режимов работы изделия, учета взаимодействия конструктивных элементов между собой и с окружающей средой определяются необходимые характеристики и свойства материалов. Описано, как, используя диаграммы состояния систем, теоретические представления о легировании и другие методы физической химии, выбрать основу сплава, легирующие элементы и легирующие комплексы, определить технологию изготовления материала и методы обработки деталей. Рассмотрены важнейшие методы синтеза сплавов. Особое внимание уделено анализу растворимости и распределению легирующих элементов в основе, взаимосвязи растворимости и термической обработки, растворимости и технологических характеристик сплавов.

Вглаве 17 (авт.: профессоры Б.А. Калин, В.В. Нечаев, доцент Г.Н. Елманов) описаны высокочистые вещества, металлы и монокристаллы. Введены основные представления о чистоте материалов и возникновении требований к чистоте различных материалов, уникальные свойства сверхчистых веществ. Рассмотрены методы анализа чистоты и методы получения высокочистых веществ, сверхчистых металлов. Значительное внимание уделено методам выращивания монокристаллов.

Вглаве 18 (авт.: профессор Б.А. Калин, доцент А.В. Шульга) описаны методы получения и обработки материалов, основы металлургии черных

ицветных металлов, в том числе производство чугуна и стали, цветных металлов (меди, алюминия и титана). Рассмотрена технология литейного производства, методы термической и химико-термической обработки,

13

обработки металлов давлением. Изложены основы порошковой металлургии, методов сварки и пайки, а также физико-химические и радиационнопучковые методы обработки объемных материалов и поверхности изделий.

Вглаве 19 (авт.: профессор Б.А. Калин, ст. преподаватель А.А. Полянский) с позиций уменьшения свободной энергии описаны проблемы стабилизации требуемого структурно-фазового состояния (СФС) материала. Раскрыты основные факторы и механизмы нестабильности СФС, обусловленные химической, деформационной и поверхностной составляющими свободной энергии. Описаны физические процессы эволюции СФС, вызванные неравномерным распределением легирующих элементов, пересыщением твердого раствора, накоплением деформационных повреждений и избыточной энергией поверхностей раздела зерен и фаз в твердом теле. Рассмотрены процессы возврата, нормального роста зерна (собирательной рекристаллизации), аномального роста зерна (вторичной рекристаллизации), эволюция волокнистых структур, рост частиц второй фазы.

Взаключении главы приведены основные приемы регулирования СФС материалов.

Глава 20 (авт. профессор Б.А.Калин) посвящена аморфным металлическим сплавам (АМС). Описаны особенности аморфного состояния, методы его получения и стабилизации. Рассмотрены физико-химические факторы формирования аморфного состояния, структура и структурные дефекты АМС. Сформулированы критерии бездиффузионного затвердевания расплава, указаны необходимые физико-химические свойства компонентов аморфного сплава. Раскрыты проблемы термической нестабильности АМС, в том числе структурная релаксация и кристаллизация аморфных сплавов. Подробно описаны свойства АМС: механические, магнитные и электрические, их химические характеристики и радиационная стойкость. Дана классификация АМС. Рассмотрены основные направления применения АМС и перспективы получения массивных аморфных сплавов.

Вглаве 21 (авт. профессор М.И. Алымов) изложены современные представления о наноматериалах и методах их получения, приведена классификация наноматериалов. Подробно рассмотрены состояние и свойства изолированных наночастиц, такие, как параметры решетки, физические и механические свойства, реакционная способность, особенности структурно-фазовых превращений. Описаны методы получения объемных наноматериалов, в том числе консолидация, прессование и спекание нанопорошков, кристаллизация аморфных сплавов и метод интенсивной пластической деформации, а также физико-механические свойства объемных наноматериалов. Описаны применение и перспективы использования наноматериалов.

14

Глава 22 (авт.: профессор И.И.Чернов и доцент А.Н. Калашников) посвящена подробному рассмотрению функциональных материалов и, прежде всего, материалов с особыми ядерно-физическими свойствами: материалы с малыми и большими сечениями захвата нейтронов, поглотители, замедлители и отражатели нейтронов. Рассмотрены материалы с особыми магнитными, электрическими и тепловыми свойствами, высокими значениями твердости, упругости, материалы со сверхпластичностью и с эффектом памяти формы.

В основу учебника положены учебные пособия, изданные авторами в последние годы: «Перспективные технологии получения и обработки материалов» (Калин Б.А., Солонин М.И.); «Металловедение быстрозакаленных сплавов, ч. 1. Быстро-закаленные сплавы и метастабильные диаграммы состояний» (Шульга А.В.); «Методы и техника получения быстрозакаленных сплавов» (Шульга А.В.); «Физическое материаловедение. Физико-химические основы выбора и разработки материалов» (Калин Б.А., Осипов В.В., Солонин М.И.); «Физическое материаловедение. Материалы с особыми физическими свойствами» (Чернов И.И., Калин Б.А., Калашников А.Н., Бинюкова С.Ю.); «Основы металловедения быстрозакаленных сплавов» (Шульга А.В.); «Физическая химия сплавов» (Нечаев В.В., Смирнов Е.А.); «Физическое материаловедение» (Калин Б.А., Лякишев Н.П. Алымов М.И.).

Учебный материал представлен в соответствии с Государственным образовательным стандартом на уровень физико-математической подготовки студентов по специальности «Физика металлов».

Каждая глава содержит контрольные вопросы и список литературы, использованной авторами и рекомендуемой студентам для более детального изучения материала. По тексту даны ссылки на более подробное описание проблемы в других главах этого и других томов.

Авторы будут признательны за критические замечания и предложения по содержанию учебника, которые учтут в дальнейшей работе.

_______

15

ГЛАВА 16. ПРИНЦИПЫ ВЫБОРА И РАЗРАБОТКИ МАТЕРИАЛОВ С ЗАДАННЫМИ СВОЙСТВАМИ

Потребность в новых материалах обусловлена целым рядом постоянно действующих факторов, к числу которых отнесем объективно наблюдаемое усложнение создаваемой техники, например, для эксплуатации при высоких температурах (стационарных и циклических), механических нагрузках (постоянных и переменных), в агрессивных средах (газах, жидкостях, жидких металлах), в различных физических полях (радиационных, электрических, магнитных). Важными являются стремления получить более высокие параметры и КПД техники, повысить ее надежность и безопасность, снизить материалоемкость изделий, улучшить дизайн и потребительские свойства продукции, расширить области применения техники и устройств. Все это связано с потребностями в новых материалах.

Разработка новых и совершенствование существующих материалов представляют собой сложный процесс, целью или основной задачей которого является направленное формирование элементного состава, фазового состояния и структуры в объеме материала и (или) в приповерхностных слоях, т.е. формирование заданного структурно-фазового состояния (СФС). Не менее важной задачей является обеспечение стабильности этого состояния в условиях эксплуатации материала (изделия).

Хорошо известно, что наличие необходимых материалов определяет возможность создания новой техники. Поэтому материалы как направление научно-технического прогресса занимают важное место в перечне критических технологий развитых стран мира. Критическими называют такие технологии, которые определяют развитие цивилизованного общества. Поэтому критериями выбора критических технологий являются: национальные потребности и интересы (конкурентоспособность предприятий, безопасность нации, энергетическая независимость, качество жизни и др.), значимость страны в мире, емкость и разнообразие рынка.

16

В перечне критических технологий ключевые позиции занимают материалы для микро- и наноэлектроники, композиты, керамики и нанокерамики, металлы и сплавы с особыми свойствами, сверхтвердые материалы, биосовместимые материалы, катализаторы, мембраны и материалы с заданными свойствами, так как материалы опре-

деляют возможности реализации научно-технических идей.

Разработка материалов с заданными свойствами, умение наиболее рационально выбирать материал для конкретных целей требует хорошего понимания того, от каких факторов зависят свойства материалов, в какой мере и какими технологическими способами можно ими управлять. Поэтому разработка конструкционных материалов базируется на анализе условий работы материала в создаваемой конструкции, знании достижений в соответствующей области материаловедения, на требованиях к основным и вспомогательным свойствам разрабатываемого материала. Сложность вопроса, по мнению профессора С.С. Горелика, связана с тем, что свойства материалов, особенно структурно чувствительные, зависят от большого числа факторов, включая химический состав, тип межатомной связи, фазовое состояние, тип, концентрацию и распределение дефектов структуры.

Хорошо известно, что большинство используемых материалов находится в термодинамически неравновесном состоянии, которое возникает при переделах материала, при использовании различных технологий обработки материалов. Это открывает значительные резервы улучшения свойств материалов путем применения новых технологий воздействия на них. Поэтому основной задачей материаловедения как науки, изучающей закономерности и механизмы образования фаз в равновесных и неравновесных условиях, является выявление зависимости свойств материалов от их структурнофазового состояния и структурных дефектов, определение принципиально новых путей создания материалов с заданным комплексом свойств.

Здесь будут рассмотрены основные этапы процесса разработки новых материалов, выбор материалов с учетом будущих условий эксплуатации материала в тех или иных изделиях. Значительное внимание будет уделено достижениям физико-химического анализа и физики твердого тела в области выбора состава материалов.

17

16.1. Основные этапы выбора или создания материала

Процессы разработки новой техники и создания новых материалов – независимые направления научно-технической деятельности. Создаются новые материалы, а затем анализируются области их эффективного использования. Однако чаще всего разработка новой техники ведется с ориентацией на существующие материалы или на перспективные разработки материаловедов. При проектировании сверхновой техники может быть поставлена задача по улучшению существующих материалов и (или) разработке новых.

Необходимыми этапами создания или выбора материала являются: анализ параметров и режимов работы конструктивных элементов (КЭ) или изделия; анализ конструкции (устройства) и совместного действия узлов; анализ возможной технологии изготовления изделия (или КЭ); изучение существующих или применяемых материалов в данной области техники; формулирование требований к материалу и его свойствам; собственно выбор материала.

16.1.1. Анализ условий работы изделия

Любой КЭ создаваемой техники должен быть изготовлен из такого материала, структурно-фазовое состояние и, следовательно, свойства которого, как и размеры (форма) этого КЭ, будут сохраняться в течение срока эксплуатации. В этой связи при рассмотрении режимов работы КЭ необходимо анализировать, прежде всего, те параметры режима, которые могут повлиять на СФС материала. Вся совокупность воздействия эксплуатационных факторов сводится к анализу воздействия физических полей (теплового, радиационного, силового, электромагнитного, акустического и др.) и химически активной среды во времени. Например, действие полей и среды может быть стационарным, циклическим, импульснопериодическим и т.п.

Для оценки воздействия того или иного физического поля на состояние материала КЭ целесообразно использовать факторы интенсивности поля (давление, плотность тока, поток энергии или мощность и др.) и время экспозиции (воздействия) для определения

18

флюенса, т.е. интегрального потока поля. Анализ воздействия сводится к задаче оценки путем расчетов (или экспериментов) нарушений кристаллической структуры (концентрации дефектов), температуры и напряженного состояния и их влияния на структурнофазовое состояние материала.

Химическая активность среды, включая контактирующее твердое тело, по отношению к выбираемому материалу определяется склонностью (сродством) контактирующих атомов к взаимодействию, т.е. к обмену электронами с образованием соединений, растворов или смесей. Из термодинамики известно1, что мерой срод-

ства служит изменение свободной энергии Гиббса: чем больше это изменение, тем сильнее взаимодействие. Кинетика взаимодействия материала зависит от агрегатного состояния среды (газообразного или жидкого), температуры, наличия внешних физических полей и СФС поверхностных слоев конструкционного материала. Анализ воздействия среды сводится к оценке скорости и выхода химических или электрохимических реакций.

Рассмотрим несколько примеров анализа параметров и режимов работы конкретных, наиболее нагруженных КЭ современной техники. Интерес представляет анализ условий работы, например, оболочки твэла ядерного энергетического реактора или первой стенки термоядерных (плазменных) установок. Общим для этих КЭ является наличие радиационного воздействия (Фi), тепловых потоков (qs), механических нагрузок (Pi) и контакта с агрессивной средой (Gi), а также характер работы ( ) – циклический (или импульсный). В то же время в условиях эксплуатации твэла и первой стенки имеются и существенные отличия, на которых остановимся по ходу изложения текста.

Радиационное воздействие. Все объекты на Земле испытывают естественное радиационное воздействие в виде -квантов и частиц (p+) из космоса (что существенно, например, для космической техники), а также -квантов и нейтронов (1n) из Земли. Обычно на поверхности земли естественное радиационное воздействие опреде-

1 Физическое материаловедение. Т. 2. – М.: МИФИ, 2007. Гл. 4.

19

ляет так называемый радиационный фон и не представляет интереса с точки зрения последствий воздействия на конструкционные материалы.

Искусственное радиационное воздействие в виде фотонов ( -квантов), электронов, заряженных частиц и нейтронов генерируют ядерные реакторы, ускорители, плазменные установки, радиационные (изотопные) источники и специальные устройства (например, лазеры). Мощные потоки частиц и излучения генерируют ядерные реакторы, наиболее напряженными конструктивными элементами которых являются твэлы и их сборки – тепловыделяющие сборки (ТВС). Конструктивное исполнение твэлов зависит от типа ядерного реактора. Для конкретности рассмотрим природу радиационного воздействия на материал оболочки твэла энергетического реактора, источником которого является деление тяжелых ядер урана (или плутония). Твэл представляет собой трубку из конструкционного материала (сплав циркония в реакторах на тепловых нейтронах и коррозионно-стойкие стали в реакторах на быстрых нейтронах), заглушенную с обоих концов. Трубка заполнена ядерным топливом (таблетки из UO2) и инертным газом (например, гелием) для лучшей теплопередачи от топлива к оболочке.

Для анализа радиационного воздействия на материалы твэла рассмотрим простейшую реакцию деления ядерного топлива. Например, под действием тепловых нейтронов (энергия менее 1 эВ) подвержены делению ядра с нечетным числом нуклонов: 235U, 233U, 239Pu. Реакцию деления 235U можно написать в виде:

235U + 1n X1 + X2 + а 1n + 200 МэВ. (16.1)

Мы видим, что в результате захвата теплового нейтрона ядро урана делится на два осколка (новые ядра) X1 и X2. При этом образуется а новых нейтронов (1n). Суммарная кинетическая энергия осколков и нейтронов равна 200 МэВ. В результате последующих ядерных превращений осколков и захвата нейтронов ядрами возникает вторичная радиация в виде -излучения, электронов ( ), протонов (p+) и -частиц. Таким образом, ядерное топливо и материал оболочки твэла подвергаются интенсивным потокам нейтронов,-излучения и частиц. Для оценки результатов радиационного воздействия необходимо знать энергию (точнее – распределение по

20