Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kurs_Lektsy_rus.doc
Скачиваний:
64
Добавлен:
07.06.2015
Размер:
1.38 Mб
Скачать

Vкрит.- критическая скорость закалки

Рисунок 15 – Кривые охлаждения, соответствующие различным видам закалки

Напряжения при закалке стали возникают в результате неравномерного охлаждения поверхности и центральных зон детали, а также из-за увеличения объема при мартенситном превращении и неодновременности протекания его по сечению детали. В первом случае напряжения классифицируются как тепловые, а во втором – как структурные.

В начале охлаждения поверхностные слои вследствие уменьшения объема сжимаются, чему противодействуют еще неохлажденные внутренние слои. Это вызывает образование в поверхностных слоях напряжений растяжения, а во внутренних – напряжений сжатия. По мере дальнейшего охлаждения напряжения начнут уменьшаться, и в некоторый момент произойдет смена знака напряжений на поверхности и в центре. После окончательного охлаждения на поверхности образуются остаточные напряжения сжатия, а в сердцевине – напряжения растяжения. Появление остаточных напряжений является результатом того, что напряжения вызывают не только упругую, но и неодновременную и неодинаковую пластическую деформацию слоев по сечению детали.

Структурные напряжения образуются по обратной схеме. В начале охлаждения в результате мартенситного превращения поверхностные слои расширяются, чему противодействуют внутренние слои, еще не испытавшие структурных преобразований. Это приводит к образованию на поверхности сжимающих напряжений, а в центре – растягивающих. По мере дальнейшего охлаждения знак напряжений на поверхности и в центральных зонах изменяется, и после окончательного остывания на поверхности будут остаточные напряжения растяжения, а в сердцевине – напряжения сжатия.

При закалке одновременно возникают как тепловые, так и структурные напряжения и в зависимости от их соотношения могут образовываться различные эпюры суммарных напряжений. Наиболее опасными являются растягивающие напряжения на поверхности, которые способствуют образованию трещин и снижают сопротивление усталостному разрушению стали.

Растягивающие напряжения возникают, в основном, за счет появления структурных напряжений, величина которых тем больше, чем выше температура закалки и интенсивнее охлаждение в интервале мартенситного превращения Мн…Мк,. Для уменьшения структурных напряжений необходимо снижать скорость охлаждения ниже температуры начала мартенситного превращения.

В качестве закалочных сред для углеродистых сталей, имеющих высокую критическую скорость закалки, применяются вода и различные водные растворы, а для легированных сталей, имеющих небольшую критическую скорость охлаждения, - масло, водовоздушные смеси и т. п.

Вода, как закалочная среда, имеет большую скорость охлаждения в перлитном интервале, но при этом и высокую скорость охлаждения при температурах образования мартенсита, что может приводить к образованию трещин и деформации закаливаемых изделий (рис.15). Кроме этого, охлаждающая способность воды резко снижается при повышении её температуры.

При закалке в масле охлаждение в мартенситном интервале осуществляется с невысокой скоростью, но в интервале перлитного превращения интенсивность охлаждения часто оказывается недостаточной для его подавления (рис. 15).

Таким образом, в настоящее время нет закалочной среды, которая бы обеспечивала идеальное охлаждение, и поэтому разработаны различные способы закалки, использование которых позволяет снизить уровень возникающих напряжений при обеспечении необходимого структурообразования.

Наиболее распространенным способом закалки является закалка в одном охладителе, при котором деталь погружают в закалочную среду, где она остается до полного охлаждения. С целью уменьшения внутренних напряжений детали перед погружением в закалочную жидкость некоторое время охлаждают на воздухе. Такой способ называется закалкой с подстуживанием. При этом необходимо, чтобы температура детали не опускалась ниже Аr3 для доэвтектоидных сталей и ниже Аr1 – для заэвтектоидных.

При закалке в двух средах деталь сначала охлаждают в воде до температуры несколько выше Мн, а затем для окончательного охлаждения переносят в среду с меньшей охлаждающей способностью, при этом уменьшаются внутренние напряжения, связанные с превращением аустенита в мартенсит.

При ступенчатой закалке деталь после нагрева охлаждается в закалочной среде, имеющей температуру несколько выше точки Мн, и выдерживается в ней до выравнивания температуры по всему сечению, но при этом не должно произойти превращение аустенита в бейнит. После этого следует окончательное охлаждение на воздухе, во время которого происходит превращение аустенита в мартенсит. Проведение ступенчатой закалки позволяет уменьшить деформации, коробление и опасность возникновения трещин.

Изотермическая закалка выполняется так же, как и ступенчатая, но выдержка при температуре несколько выше Мн увеличивается для завершения превращений аустенита в бейнит. Данный способ закалки применяется для легированных сталей и последующий отпуск не производится. В качестве охлаждающих сред при ступенчатой и изотермической закалках применяют расплавленные соли (55% KNO и 45%NaNO3) или щелочи (20%NaOH и 80%KOH).

Закалка с самоотпуском применяется в основном для ударного инструмента (зубила, кузнечный инструмент и т. д.), когда для обеспечения высокой стойкости инструмента требуется, чтобы твердость постепенно и равномерно снижалась от рабочей к хвостовой части. Такое распределение твердости возможно, если при закалке нагретую деталь рабочей частью погружают в воду и вынимают после кратковременной выдержки. За счет тепла хвостовой части детали её рабочая часть нагревается и отпускается. Температуру нагрева определяют по цветам побежалости, появление которых объясняется возникновением на шлифованной поверхности тонких слоев окислов. Цвет слоя зависит от его толщины, которая определяется температурой. При температуре 220оС поверхность приобретает светло-желтый цвет, при 230оС - желтый, при 240оС - темно-желтый, при 250оС - оранжевый, при 260оС - коричневый, при 270оС - красный, при 280оС - фиолетовый, при 300оС - синий, при 320оС - серый. Этот давно известный способ сейчас становится все более востребованным, что объясняется стремлением к энергосберегающим технологиям и открывающимися возможностями предварительного моделирования закалочного процесса и его выполнения в автоматическом режиме.

2.3.2.3 Обработка холодом

Если температура конца мартенситного превращения ниже 0оС, то после закалки в структуре стали содержится остаточный аустенит. Наличие остаточного аустенита снижает твердость стали, а его последующий распад приводит к изменению форм и размеров. Чем ниже температура конца мартенситного превращения, тем больше остаточного аустенита в структуре закаленной стали.

С целью уменьшения количества остаточного аустенита сталь после закалки охлаждают до отрицательных температур. Такой технологический процесс называется обработкой холодом, в результате чего возобновляется мартенситное превращение. Температурный режим обработки холодом определяется температурой конца мартенситного превращения. Поскольку превращение происходит только при охлаждении в области мартенситного превращения. Более глубокое охлаждение нецелесообразно, поскольку не вызовет дополнительного превращения.

После закалки стали выдержка при комнатной температуре приводит к стабилизации аустенита и при последующей обработке холодом не весь остаточный аустенит будет превращаться в мартенсит. Поэтому обработку холодом рекомендуется проводить немедленно после закалки.

Обработка холодом целесообразна для углеродистых сталей с содержанием углерода свыше 0,6% и применяется для стабилизации размеров калибров, колец шарикоподшипников и других особо точных изделий, для получения максимальной твердости инструмента и цементованных деталей, а также для повышения магнитных характеристик стальных магнитов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]