Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety.docx
Скачиваний:
175
Добавлен:
10.06.2015
Размер:
351.42 Кб
Скачать
  1. Электромеханическое преобразование энергии. Материалы, применяемые в электромашиностроение.

Электрические машины разделяют по назначению на два основных вида: электрические генераторы и электрические двигатели. Генераторы предназначены для выработки электрической энергии, а электродвигатели - для приведения в движение колесных пар локомотивов, вращения валов вентиляторов, компрессоров и т. п.      В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии.       Принцип действия любой электрической машины основан на использовании явлений электромагнитной индукции и возникновения электромагнитных сил при взаимодействии проводников с током и магнитного поля. Эти явления имеют место при работе как генератора, так и электродвигателя.       Лабораторный стенд для изучения электромеханического преобразования энергии состоит из двух однотипных машин постоянного тока с возбуждением от постоянных магнитов. В процессе его эксплуатации произошло повреждение. Задачей была модернизация стенда. В результате выполнена разработка рабочей схемы и замена поврежденных элементов, что позволяет улучшить качество работы стенда для изучения электромеханического преобразования энергии. 

Значение электроматериалов. Материалы, применяемые в электромашиностроительной промышленности, в значительной степени определяют технические показатели электрических машин. Использование высококачественной стали позволяет существенно уменьшить вес и габариты машин и увеличить их к. п. д. Свойства

изолирующих материалов и лаков ограничивают допустимые электромагнитные нагрузки. Толщина и нагревостойкость изоляционных материалов определяют степень использования электрических машин. Обычно изоляция занимает в среднем 30% общего объема паза, в котором заложены проводники обмотки. Уменьшение толщины изоляции позволяет увеличить объем проводников в пазу, а следовательно, увеличить мощность машины при сохранении ее габаритов. Повышенная нагревостойкость изоляционных материалов также позволяет увеличить нагрузку машины.

Технические показатели электрических машин и их надежность в значительной мере зависят не только от правильной конструкции и расчета, но и от правильного выбора магнитных и изолирующих материалов, их свойств и качеств, а также от материалов конструктивных элементов, обеспечивающих требуемую механическую проч ность.

Применяемые в электропромышленности материалы делятся на три группы: конструктивные, активные и электроизоляционные.

Конструктивные и активные материалы. Из конструктивных материалов изготовляются части машины, несущие механическую нагрузку. В электромашиностроении применяются в основном те же конструктивные материалы, что и в общем машиностроении. К ним относятся сталь, чугун, цветные металлы и пластмассы.

Активные материалы служат для проведения магнитного потока машины и электрического тока и делятся на токопроводящие и магнитопроводящие.

В качестве основного токопроводящего материала до последнего времени использовалась медь, которая сравнительно недорога, имеет малое электрическое сопротивление, хорошо сваривается и обладает хорошими антикоррозийными свойствами. Однако медь дефицитна, поэтому в последние годы в качестве проводникового материала начали применять более дешевый и широко распространенный алюминий. Его достоинствами являются низкий удельный вес, более высокая проводимость на единицу веса, легкость механической обработки и хорошие антикоррозийные свойства. Недостатком алюминия является повышенное удельное электрическое сопротивление и плохая свариваемость. Вследствие повышенного удельного электрического сопротивления машины с алюминиевыми обмотками имеют большие габариты. В электромашиностроении широко применяют различные медные сплавы, например латунь, фосфористую бронзу и т. д.

К токопроводящим элементам следует отнести также щетки, при помощи которых осуществляется съем тока с вращающихся обмоток через контактные кольца или коллектор. Щетки обычно изготовляются на основе графита, угля или меди. Основным магнитопроводящим материалом является листовая легированная электротехническая сталь, содержащая от 2 до 5%

кремния. Присадка кремния уменьшает потери на гистерезис. Вследствие увеличения удельного электрического сопротивления стали уменьшаются потери на вихревые токи. Сталь становится устойчивой к окислению и старению, но делается более хрупкой. В последние годы широко используется холоднокатаная текстуро-ванная сталь с более высокими магнитными свойствами в направлении проката. Сердечник магнитопровода выполняется в виде пакета, собранного из листов штампованной стали. Толщина стального листа от 0,5 до 0,15 мм.

Для проведения постоянного магнитного потока широко используется стальное литье и чугун.

Электроизоляционные материалы. Электроизоляционные материалы применяются для электрической изоляции токоведущих частей машины. Изоляция обмоточных проводников машины в значительной мере определяет ее технико-экономические показатели и эксплуатационные качества. От толщины изоляции существенно зависят габариты и вес машины. Применяемые изоляционные материалы должны иметь высокую электрическую прочность, быть на-грево-, влаго- и химически стойкими. Изоляция должна также обладать высокими удельными сопротивлениями и малыми диэлектри- . ческими потерями. От твердых материалов требуется достаточная механическая прочность.

По условию нагревостойкости твердые электроизоляционные материалы делятся на семь классов. Наибольшее распространение до последнего времени имели материалы класса А, к которому относятся пропитанные бумага, картон, дерево, хлопчатобумажные и шелковые ткани и ленты. Материалы пропитываются с целью улучшения электрической прочности и теплопроводности, а также для уменьшения гигроскопичности. Пропитывающими веществами могут служить трансформаторное масло, масляные лаки и битумные составы. Допустимая температура нагрева для материалов этого класса составляет 105° С. При отсутствии пропитки эти изоляционные материалы принадлежат к классу У, их допустимая температура нагрева 90° С.

В последнее время начинают широко применять синтетические изоляционные материалы, которые имеют малую толщину и высокие электрические и механические показатели. Синтетические органические пленки типа лавсан, пластмассы с органическим наполнителем и слоистые пластики принадлежат к электроизоляционным материалам класса Е, допустимая температура нагрева которых 120° С.

К материалам класса В принадлежат изделия из слюды, асбеста и стеклянного волокна, содержащие для их связывания и пропитки органические лаки и смолы повышенной нагревостойкости, а также изделия из пластмассы с неорганическим наполнителем. К этому классу относятся такие высококачественные материалы, как микалента и микафолий, изготовляемые из пластинок слюды,

склеенных между собой и наклеенных на бумагу. Они хорошо удовлетворяют всем требованиям, предъявляемым к изоляционным материалам, но относительно дороги. Предельно допустимая температура нагрева для материалов класса В 130° С.

В последнее время получает широкое распространение синтетическая изоляция типа термопластик, изготовленная на слюдяной основе с применением термоактивного полиэфиро-стирольного компаунда. Электроизоляционные и механические свойства термопластика выше, чем микаленты, но он имеет более сложную технологию изготовления. Изделия из слюды, асбеста и стеклянного волокна, на основе синтетических пропитывающих составов, принадлежат к электроизоляционным материалам класса F, их допустимая температура нагрева 155° С. Те же материалы, применяемые в сочетании с кремнийорганическими связывающими и пропитывающими веществами, принадлежат к классу Н, допустимая температура нагрева которого 180° С. Кремнийорганическая изоляция является особенно перспективной, хотя она в настоящее время относительно дорога.

К материалам класса С относятся изделия из слюды, стекла, стекловолокна, фарфора и других неорганических материалов без примеси органических связывающих веществ. Допустимая температура для материалов этого класса не ограничивается.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]