Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
131313.doc
Скачиваний:
21
Добавлен:
11.06.2015
Размер:
67.07 Кб
Скачать
              1. 2. Классификация сегнетоэлектриков

Классифицировать сегнетоэлектрики можно по разным признакам. Наиболее распространена классификация сегнетоэлектриков в соответствии со структурой и связанной с ней механизмом возникновения спонтанной поляризации при фазовом переходе. По этому признаку они подразделяются на сегнетоэлектрики типа «смещения», у которых переход в сегнетоэлектрическую фазу связан со смещением ионов, и сегнетоэлектрики типа «порядок-беспорядок», у которых при переходе в сегнетоэлектрическую фазу происходит упорядочение имевшихся в исходной фазе диполей. Сегнетоэлектрики типа «смещения» подразделяются на две основные группы: группу перовскита и группу псевдоильменита. Ионы кислорода размещаются в центре граней куба, образуя октаэдр. Возникновение спонтанной поляризации в них связано с изменением ионов титана. Важная особенность таких сегнетоэлектриков способность образовывать твердые растворы с соединениями аналогичной структуры, например BaTiO3-SrTiO3, PbTiO3-PbZrO3. Это позволяет создавать керамику с заданными свойствами для многочисленных устройств: пьезопреобразователей, пьезоприводов, пьезодвигателей, позисторов, варикондов и др. Сегнетоэлектрики типа «порядок - беспорядок» делятся на три основные группы: группу дигидрофосфата калия (KDP) — дигидрофосфаты и дигидроарсенаты щелочных металлов (KH2PO4, PdH2PO4, KH2AsO4, RbH2AsO4, CsH2AsO4) и их дейтриевые аналоги; группу триглицинсульфата (ТГС) — (NH2CH2COOH3)H2SO4; жидкокристаллические сегнетоэлектрики. Упорядочивающимися элементами структуры в сегнетоэлектриках группы KDR являются протоны (дейтроны) в водородных связях. Возникновение спонтанной поляризации связано с тем, что положения всех протонов становятся упорядоченными. Основные применения этой группы кристаллов — в устройствах нелинейной оптики и электрооптики. Сегнетоэлектрические свойства кристаллов группы ТГС обусловлены упорядочиванием протонов в водородных связях, что приводит к возникновению диполей у молекул глицина и сульфатионов. Применяются в пироприемниках и мишенях пировидиконов. Жидкокристаллические сегнетоэлектрики — широкий класс жидких кристаллов, содержащих упорядочивающиеся полярные молекулы. Они обладают рядом электрических и оптических свойств, характерных для сегнетоэлектриков: резким фазовым переходом, сопровождающимся аномалиями тепловых, диэлектрических и оптических свойств; высокими значениями диэлектрической проницаемости (~ 102) и другими. Некоторые жидкокристаллические сегнетоэлектрики обнаруживают петли диэлектрического гистерезиса. Оптические свойства сильно зависят от температуры и направленности внешнего электрического поля; на этом основаны наиболее важные применения таких сегнетоэлектриков: оптические индикаторы, транспаранты, дисплеи и другие.

3. Основные свойства

Многие свойства сегнетоэлектриков отличаются от свойств, которых следовало бы ожидать для однородных материалов. Это обусловлено наличием доменов точно так же, как в ферромагнетиках. Так, например, характер тока переключения тесно связан с поведением доменов. Домены имеются как в монокристалле, так и в кристаллах керамического образца. Сегнетоэлектрический домен представляет собой макроскопическую область, в которой направление спонтанной поляризации одинаково и отличается от направления спонтанной поляризации в соседних доменах. Энергетически наиболее выгодной является такая структура, при которой обеспечивается электрическая нейтральность доменных границ, т. е. проекция вектора поляризации на границу со стороны одного домена должна быть равна по длине и противоположна по направлению проекции вектора поляризации со стороны соседнего домена. По этой причине электрические моменты доменов ориентируются по принципу «голова» к «хвосту». Установлено, что линейные размеры доменов составляют от 10-4 до 10-1 см. Внешнее электрическое поле изменяет направления электрических моментов доменов, что создает эффект очень сильной поляризации. Этим объясняются свойственные сегнетоэлектрикам сверхвысокие значения диэлектрической проницаемости (до сотен тысяч). Доменная поляризация связана с процессами зарождения и роста новых доменов за счет смещения доменных границ, которые в итоге вызывают переориентацию вектора спонтанной поляризованности в направлении внешнего электрического поля. Рис. 1: Схематическое изображение элементарной ячейки сегнетоэлектрика в полярной фазе (а и б) и в неполярной фазе (в); стрелки указывают направление дипольных моментов. Следствием доменного строения сегнетоэлектриков является нелинейная зависимость их электрической индукции от напряженности электрического поля, показанная на рис. 1. При воздействии слабого электрического поля связь между D и Е носит приблизительно линейный характер (участок ОА). На этом участке преобладают процессы обратимого смещения (флуктуации) доменных границ. В области более сильных полей (область АВ) смещение доменных границ носит необратимый характер. При этом разрастаются домены с прественной ориентацией, у которых вектор спонтанной поляризацииимуще образует наименьший угол с направлением поля. При некоторой напряженности поля, соответствующей точке В, все домены оказываются ориентированными по полю. Наступает состояние технического насыщения. Некоторое возрастание индукции в сегнетоэлектрике на участке технического насыщения обусловлено процессами индуцированной (т. е. электронной и ионной) поляризации. Кривую ОАВ называют основной кривой поляризации сегнетоэлектрика (кривая заряда сегнетоэлектр. конденсатора). Выше температуры перехода ТK температурная зависимость диэлектрической проницаемости часто хорошо апроксимируется законом Кюри-Вейса: = 4С / (Т-Тс), где С — константа Кюри. Ниже температуры перехода  быстро уменьшается. Статическая диэлектрическая проницаемость ст определяется по основной кривой поляризации сегнетоэлектрика: ст = D/(0Е) = 1 + Р/(0Е)  Р/(0Е) Эффективную диэлектрическую проницаемость эф, как и эффективную емкость конденсатора, определяют по действующему значению тока I (не синусоидального), проходящего в цепи с нелинейным элементом при заданном действующем напряжении U с угловой частотой : эф ~ Сэф = I/(U) Рис. 2: Основную кривая поляризации сегнетоэлектрика Если в поляризованном до насыщения образце уменьшить напряженность поля до нуля, то индукция в ноль не обратится, а примет некоторое остаточное значение Dr. При воздействии полем противоположной полярности индукция быстро уменьшается и при некоторой напряженности поля изменяет свое направление. Дальнейшее увеличение напряженности поля вновь переводит образец в состояние технического насыщения (точка С). Отсюда следует, что переполяризация сегнетоэлектрика в переменных полях сопровождается диэлектрическим гистерезисом. Напряженность поля Ер, при которой индукция проходит через ноль, называется коэрцитивной силой. Диэлектрический гистерезис обусловлен необратимым смещением доменных границ под действием поля и свидетельствует о дополнительном механизме диэлектрических потерь, связанных с затратами энергии на ориентацию доменов. Совокупность вершин гистерезисных петель, полученных при различных значениях амплитуды переменного поля, образует основную кривую поляризации сегнетоэлектрика. Нелинейность (Е) является важной характеристикой сегнетоэлектриков. Если создаваемая приложенным полем Е поляризация не остается пропорциональной при возрастании поля, то измерения в переменном поле будут давать различные значения проницаемости при различных амплитудах поля. Нелинейность  проявляется также при измерениях в достаточно малом поле при наличии дополнительного смещающего напряжения. Нелинейность поляризации по отношению к полю, и наличие гистерезиса обусловливают зависимость диэлектрической проницаемости и емкости сегнетоэлектрического конденсатора от режима работы. Для хар-ки свойств материала в различных условиях работы нелинейного элемента используют понятия статической, реверсивной, эффективной и других диэлектрических проницаемостей. Рис. 3: Сегнетоэлектрики Рис. 4. Взаимодействие электрического поля Е одной части образца со спонтанной поляризацией другой его части. Специфические свойства сегнетоэлектриков проявляются лишь в определенном диапазоне температур. В процессе нагревания выше некоторой температуры происходит распад доменной структуры, и электрик переходит в параэлектрическое состояние. Температура такого фазового перехода получила название сегнетоэлектрической точки Кюри. В точке Кюри спонтанная поляризованность исчезает, а диэлектрическая проницаемость достигает своего максимального значения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]