Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika (1).doc
Скачиваний:
140
Добавлен:
05.02.2016
Размер:
44.07 Mб
Скачать

Точка росы

Сухость или влажность воздуха зависит от того, насколько близок его водяной пар к насыщению.Если влажный воздух охлаждать, то находящийся в нем пар можно довести до насыщения, и далее он будетконденсироваться.Признаком того, что пар насытился является появление первых капель сконденсировавшейся жидкости - росы.Температура, при которой пар, находящийся в воздухе, становится насыщенным, называется точкой росы.Точка росы также характеризует влажность воздуха.Примеры: выпадение росы под утро, запотевание холодного стекла, если на него подышать, образование капли воды на холодной водопроводной трубе, сырость в подвалах домов.

Измерение влажности

Для измерения влажности воздуха используют измерительные приборы - гигрометры.Существуют несколько видов гигрометров, но основные:волосной и психрометрический.

Так как непосредственно измерить давление водяных паров в воздухе сложно, относительную влажность воздуха измеряют косвенным путем.

Принцип действия волосного гигрометра основан на свойстве обезжиренного волоса ( человека или животного) изменять свою длину в зависимости от влажности воздуха, в котором он находится.

Волос натянут на металлическую рамку. Изменение длины волоса передаётся стрелке, перемещающейся вдоль шкалы. Волосной гигрометр в зимнее время являются основным прибором для измерения влажности воздуха вне помещения.

Более точным гигрометром является гигрометр психрометрический – психрометр( по др. гречески "психрос" означает холодный).Известно, что от относительной влажности воздухазависит скорость испарения. Чем меньше влажность воздуха, тем легче влаге испаряться.

В психрометре есть два термометра. Один - обычный, его называют сухим. Он измеряет температуру окружающего воздуха. Колба другого термометра обмотана тканевым фитилем и опущена в емкость с водой. Второй термометр показывает не температуру воздуха, а температуру влажного фитиля, отсюда и название увлажненный термометр. Чем меньше влажность воздуха, тем интенсивнее испаряется влага из фитиля, тем большее количество теплоты в единицу времени отводится от увлажненного термометра, тем меньше его показания, следовательно, тем больше разность показаний сухого и увлажненного термометров.

33 билет

\-------

34 билет

Жидкости занимают промежуточное положение между газо­образными и твердыми веществами. При температурах, близких к температурам кипения, свойства жидкостей приближаются к свойствам газов; при температурах, близких к температурам плавления, свойства жидкостей приближаются к свойствам твер­дых веществ. Если для твердых веществ характерна строгая упо­рядоченность частиц, распространяющаяся на расстояния до со­тен тысяч межатомных или межмолекулярных радиусов, то в жидком веществе обычно бывает не более нескольких десятков упорядоченных частиц - объясняется это тем, что упорядоченность между частицами в разных местах жидкого вещества так же быстро возникает, как и вновь «размывается» тепловым колебанием частиц.  Вместе с тем общая  плотность упаковки частиц жидкого вещества мало отличается от твердого вещества - поэтому их плотность близка к плотности твердых тел, а сжимаемость очень мала. Например, чтобы уменьшить объем, занимаемый жидкой водой, на 1%, требуется приложить давление ~ в 200 атм, тогда как для такого же уменьшения объема газов требуется давление порядка 0,01  атм. Следовательно, сжимаемость жид­костей примерно и 200 : 0,01 = 20000 раз меньше сжимаемости газов.

Выше отмечалось, что жидкости имеют определенный собственный объем и принимают форму сосуда, в котором находятся; эти их свойства значительно ближе к свойствам твердого, чем газообразного вещества. Большая близость жидкого состояния к твердому подтверждается также данными по стандартным энтальпиям испарения ∆Н°исп и стандартным энтальпиям плавления ∆Н°пл. Стандартной энтальпией испарения называют количество теплоты, необходимое для превращения 1 моль жидкости в пар при 1 атм (101,3 кПа). То же количество теплоты выделяется при конденсации 1 моль пара в жидкость при 1 атм. Количество теплоты, расходуемое на превращение 1 моль твердого тела в жидкость при 1 атм, называют стандартной энтальпией плавления (то же количество теплоты  высвобождается  при «замерзании» («отвердевании») 1 моль жидкости при 1 атм). Известно, что ∆Н°пл намного меньше соответствующих значений ∆Н°исп, что легко понять, поскольку переход из твердого состояния в жидкое сопровождается меньшим нарушением межмолекулярного притя­жения, чем переход из жидкого в газообразное состояние.

Ряд других важных свойств жидкостей больше напоминает свойства газов. Так, подобно газам жидкости могут течь - это их свойство называется текучестью. Сопротивляемость течению определяется вязкостью. На текучесть и вязкость влияют силы притяжения между молекулами жидкости, их относительная мо­лекулярная масса, а также целый ряд других факторов. Вязкость жидкостей  ~  в 100 раз больше, чем у газов. Так же, как и газы, жидкости способны диффундировать, хотя и гораздо медленнее, поскольку частицы жидкости упакованы гораздо плотнее, чем частицы газа.

Одно из важнейших свойств именно жидкости - ее поверхностное натяжение (это свойство не присуще ни газам, ни твер­дым веществам). На молекулу, находящуюся в жидкости, со всех сторон равномерно действуют межмолекулярные силы. Однако на поверхности жидкости баланс этих сил нарушается, и вследст­вие этого «поверхностные» молекулы оказываются под действием некой результирующей силы, направленной внутрь жидкости. По этой причине поверхность жидкости оказывается в состоянии натяжения. Поверхностное натяжение - это минимальная сила, сдерживающая движение частиц жидкости в глубину жидкости и тем самым удерживающая поверхность жидкости от сокращения. Именно поверхностным натяжением объясняется «каплевидная» форма свободно падающих частиц жидкости.

35 билет

Кристаллическое состояние вещества, характеризуется наличием дальнего порядка в расположении частиц (атомов,ионов. молекул). В кристаллическом состоянии существует и ближний порядок, который характеризуется постоянными координационными числами, валентными углами и длинами хим. связей. Инвариантность характеристик ближнего порядка в кристаллическое состояние приводит к совпадению структурных ячеек при их трансляционном перемещении и образованию трехмерной периодичности структуры (см. Кристаллохимия. Кристаллы).

Вследствие своей максимальной упорядоченности кристаллическое состояние вещества характеризуется минимальной внутренней энергией и является термодинамически равновесным состоянием при данных параметрах - давлении, температуре, составе (в случае твердых растворов) и др. Строго говоря, полностью упорядоченное кристаллическое состояние реально не может быть осуществлено, приближение к нему имеет место при стремлении температуры к 0 К (т. наз. идеальный кристалл). Реальные тела в кристаллическом состоянии всегда содержат некоторое количестводефектов, нарушающих как ближний, так и дальний порядок. Особенно много дефектов наблюдается в твердых растворах, в которых отдельные частицы и их группировки статистически занимают различные положения в пространстве.

Вследствие трехмерной периодичности атомного строения основными признаками кристаллов являются однородность и анизотропия свойств и симметрия, которая выражается, в частности, в том, что при определенных условиях образования кристаллы приобретают форму многогранников (см. Монокристаллов выращивание). Некоторые свойствавещества на поверхности кристалла и вблизи от нее существенно отличны от этих свойств внутри кристалла, в частности из-за нарушения симметрии. Состав и, соответственно, свойства меняются по объему кристалла из-за неизбежного изменения состава среды по мере роста кристалла. Таким образом, однородность свойств так же, как и наличие дальнего порядка, относится к характеристикам "идеального" кристаллическое состояние

Большинство тел в кристаллическое состояние является поликристаллическими и представляет собой сростки большого числа мелких кристаллитов (зерен) - участков размером порядка 10-1-10-3 мм, неправильной формы и различно ориентированных. Зерна отделены друг от друга межкристаллитными слоями, в которых нарушен порядок расположения частиц. В межкристаллитных слоях происходит также концентрирование примесей в процессе кристаллизации. Из-за случайной ориентации зерен поликристаллическое тело в целом (объем, содержащий достаточно много зерен) может быть изотропным, например полученное при осаждении кристаллических порошков с послед. спеканием. Однако обычно в процессе кристаллизации и особенно пластической деформации возникает текстура - преимуществ, ориентация кристаллических зерен в определенном направлении, приводящая к анизотропии свойств.

На диаграмме состояния однокомпонентной системы вследствие полиморфизма кристаллическое состояние может отвечать несколько полей, расположенных в области сравнительно низких температур и повышенных давлений. Если имеется лишь одно поле кристаллического состояния и вещество химически не разлагается при повышении температуры, то поле кристаллическое состояние граничит с полями жидкости и газа по линиям плавлениякристаллизации и возгонки - конденсации соотв., причем жидкость и газ (пар) могут находиться в метастабильном (переохлажденном) состоянии в поле кристаллическое состояние, тогда как кристаллическое состояние не может находиться в поле жидкости или пара, т. е. кристаллическое вещество нельзя перегреть выше температуры плавления или возгонки. Некоторые вещества (мезогены) при нагреве переходят в жидкокристаллическое состояние (см. Жидкие кристаллы). Если на диаграмме однокомпонентной системы имеются два и более полей кристаллического состояния, эти поля граничат по линии полиморфных превращений. Кристаллическое вещество можно перегреть или переохладить ниже температуры полиморфного превращения. В этом случае рассматриваемое кристаллическое состояние вещества может находиться в поле других кристаллических модификации и является метастабильным.

В то время как жидкость и пар благодаря существованию критической точки на линии испарения можно непрерывно перевести друг в друга, вопрос о возможности непрерывного взаимного превращения кристаллического состояния ижидкости окончательно не решен. Для некоторых веществ можно оценить критические параметры - давление и температуру, при которых DHпл и DVпл равны нулю, т. е. кристаллическое состояние и жидкость термодинамически неразличимы. Но реально такое превращение не наблюдалось ни для одного вещества (см. Критическое состояние).

Вещество из кристаллическое состояние можно перевести в неупорядоченное состояние (аморфное или стеклообразное), не отвечающее минимуму свободной энергии, не только изменением параметров состояния (давления, температуры, состава), но и воздействием ионизирующего излучения или тонким измельчением. Критический размер частиц, при котором уже не имеет смысла говорить о кристаллическое состояние, примерно 1 нм, т.е. того же порядка, что и размер элементарной ячейки.

36 билет

Электри́ческий заря́д — это связанное с телом свойство, позволяющее ему быть источником электрического поля и участвовать в электромагнитных взаимодействиях. Заряд является количественной характеристикой. Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за время 1с. Впервые электрический заряд был введён в законе Кулона в 1785 году. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9×109 H.Свойства электрического заряда Заряд бывает двух видов, называемых положительным и отрицательным: заряды одного вида отталкиваются друг от друга, заряды разных видов - притягиваются, причем сила отталкивания равна по модулю силе притягивания; число положительных и отрицательных зарядов во Вселенной одинаковое. Полный электрический заряд изолированной системы сохраняется. Закон Кулона и пpинцип супеpпозиции полей. Электpостатика лекции и конспекты по физике Электрический заряд релятивистски инвариантен, т. е. его величина не зависит от скорости системы отсчета, как бы велика она ни была. Величина заряда может принимать только дискретные значения: минимальный заряд частицы e = 1.60·1019 Кл; любой заряд q кратен минимальному, т.е. q=Ne, где N - целое число; минимальные положительный и отрицательный заряды равны по абсолютной величине.

37 билет

Закон Кулона - это закон взаимодействия двух неподвижных точечных зарядов. Закон Кулона формулируется следующим образом: Сила электрического взаимодействия между двумя точечными зарядами в вакууме пропорциональна этим зарядам и обратно пропорциональна квадрату расстояния между ними.

При взаимодействии одноименные заряды отталкиваются, разноименные притягиваются. Силы Кулона направлены по прямой, соединяющей заряды.

Закон Кулона для взаимодействия точечных зарядов Q1 и Q2, находящихся на расстоянии r друг от друга, записывается формулой:

Сила отталкивания F, действующая на заряд Q2 со стороны одноименного заряда Q1, совпадает по направлению с радиусом-вектором r, проведенным из Q1 к этому заряду.

38 билет

Физическая величина, равная отношению силы, с которой электрическое поле действует на точечный электрический заряд, к значению этого заряда, называетсянапряженностью электрического поля. Обозначив напряженность буквой , запишем

где q1— заряд, на который действует сила 

Используя закон Кулона и определение понятия напряженности поля, получим выражение для модуля напряженности электрического поля в некоторой точке А на расстоянии г от точечного заряда q.Если в точку А поместить точечный заряд q1, то на него будет действовать сила, по закону Кулона равная

Для нахождения модуля напряженности электрического поля в точке А разделим модуль силы на модуль заряда q1:

Напряженность электрического поля точечного заряда прямо пропорциональна заряду q и обратно пропорциональна квадрату расстояния r от заряда до данной точки поля. Она не зависит от заряда qlt помещенного в данную точку поля, следовательно, является однозначной силовой характеристикой поля в данной точке.

Напряженность электрического поля — векторная величина. За направление вектора напряженности электрического поля принимается направление вектора кулоновской силы , действующей на точечный положительный электрический заряд, помещенный в данную точку поля.

Зная напряженность электрического поля в данной точке поля, можно определить модуль и направление силы , с которой электрическое поле будет действовать на любой электрический заряд q в этой точке:

Опыт показывает, что если на электрический заряд q действуют одновременно электрические поля нескольких зарядов, то результирующая сила оказывается равной геометрической сумме сил, действующих со стороны каждого поля в отдельности. Это свойство электрических полей означает, что поля подчиняются принципу суперпозиции: если в данной точке пространства различные заряженные частицы создают электрические поля с напряженностями

 , и т. д., то вектор напряженности электрического поля равен сумме векторов напряженностей всех электрических полей (рис. 105):

39 билет

Взаимодействие тел с электрическим полем зависит от того, из каких веществ они состоят, а именно, содержат, или нет, эти вещества заряженные частицы (электроны или ионы), способные свободно перемещаться под действием электрических сил.

Заряженные частицы, которые могут свободно перемещаться в электрическом поле, называют свободными зарядами, а вещества, содержащие их, - проводниками. Проводниками являются металлы, жидкие растворы и расплавы электролитов. Свободными зарядами в металле являются электроны внешних оболочек атомов, потерявшие с ними связь. Эти электроны, называемые свободными электронами, могут свободно двигаться по металлическому телу в любом направлении. В растворах солей свободными зарядами служат положительно и отрицательно заряженные ионы.

В условиях электростатики, т.е., когда электрические заряды неподвижны, напряжённость электрического поля внутри проводника всегда равна нулю. Действительно, если предположить, что поле внутри проводника всё-таки есть, то тогда на находящиеся в нём свободные заряды будет действовать электрические силы, пропорциональные напряжённости поля, и эти заряды начнут двигаться, а значит, поле перестанет быть электростатическим. Таким образом, электростатическое поле внутри проводника отсутствует.

Исчезновение внутри проводника электростатического поля происходит следующим образом. Пусть металлический проводник в форме шара вносят в электрическое поле, напряжённость которого в данной области постоянна, т.н. однородное поле. Как только это произойдёт, свободные электроны проводника под действием электрических сил начнут перемещаться (см. стрелки на рис. 36а), в результате чего одна часть проводника зарядится положительно, а другая – отрицательно. Этот процесс перемещения закончится тогда, когда образовавшиеся заряды на противоположных частях шара создадут внутри проводника такое поле, которое полностью компенсирует внешнее электрическое поле. После этого напряжённость электрического поля внутри шара станет равной нулю, и свободные заряды опять станут неподвижными. При этом переместившиеся заряды изменят поле снаружи проводника (рис. 36б), а его силовые линии станут перпендикулярными поверхности шара, т.к. составляющаявектора напряжённости, параллельная поверхности проводника, вызвала бы движение его свободных зарядов. Явление, приводящее к исчезновению электростатического поля внутри проводника, называютэлектростатической индукцией.      

Вещества, в которых нет свободных зарядов, называют диэлектрикамиили изоляторами. Примерами диэлектриков могут служить различные газы, некоторые жидкости (вода, бензин, спирт и др.), а также многие твёрдые вещества (стекло, фарфор, плексиглас, резина и др.).

Существуют два вида диэлектриков – полярные и неполярные. В молекуле полярного диэлектрика положительные заряды находятся преимущественно в одной её части («+» полюс), а отрицательные – в другой («-» полюс). У неполярного диэлектрика положительные и отрицательные заряды одинаково распределены по молекуле.

Во внешнем поле на разноимённые полюса молекулы полярного диэлектрика действуют противоположно направленные силы (F и –F на рис. 36в), которые стараются повернуть молекулу вдоль вектора напряжённости поля. Внешнее поле действует также и на молекулу неполярного диэлектрика, перемещая внутри неё разноимённые заряды в разные стороны, в результате чего эта молекула становится похожей на молекулу полярного диэлектрика, ориентируясь тоже вдоль линий поля. Таким образом, во внешнем поле заряды в молекулах диэлектрика смещаются в направлении действия электрических сил (рис. 36г). Это явление называют поляризацией диэлектрика.

При поляризации диэлектрика на его противоположных по отношению к внешнему полю поверхностях появляются  разноимённые электрические заряды, называемые связанными. Связанные заряды создают в диэлектрике электрическое поле, вектор напряжённости которого направлен противоположно вектору внешнего поля, в результате чего электрическое поле внутри диэлектрика уменьшается в eраз. Величину e называют диэлектрической проницаемостьюдиэлектрика, которая равна для воздуха - 1,0006, бензина – 2,3, плексигласа – 3,4, стекла - от 5 до 10, а для воды – 81.   

Вопросы для повторения:

·        Что такое свободные заряды, проводники и диэлектрики?

·        Опишите явление электростатической индукции.

·        Что такое поляризация диэлектрика?

40 билет

Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду:φ = W / q = const- энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.Потенциалом электростатического поля называют саклярную физическую величину, равную отношению потенциальной энергии заряда в поле к модулю этого заряда:φ = Wп / q = constПотенциал однородного поля:φ = Wп / q = -Exx + CЗначение потенциала в данной точке зависит от выбора нулевого уровня для отсчёта потенциала. Этот уровень выбирают произвольно.

Разность потенциалов (напряжение) между двумя точками равна отношению работы поля при перемещении заряда из начальной точки в конечную к модулю этого заряда:U = φ1 - φ2 = -Δφ = A / q,A = -(Wп2 - Wп1) = -q(φ2 - φ1) = -qΔφ

Разность потенциалов измеряется в вольтах (В = Дж / Кл)Связь между напряжённостью электростатического поля и разностью потенциалов:Ex = Δφ / ΔxНапряжённость электростатического поля направлена в сторону убывания потенциала. Измеряется в вольтах, делённых на метры (В / м).

 

41 билет

Электрическая емкость проводника или устройства, состоящего из двух проводников, разделенных диэлектриком, характеризует их способность накапливать электрические заряды.

В технике широко применяют конденсаторы — устройства, кото­рые при сравнительно малых размерах способны накапливать зна­чительные электрические заряды. Они используются в энергетиче­ских установках, в устройствах электроники, автоматики и др.

Плоский конденсатор в простейшем виде состоит из двух метал­лических пластин-обкладок, разделенных диэлектриком, например воздухом, слюдой, парафинированной бумагой и др.

В зависимости от вида диэлектрика конденсатор называют бу­мажным, слюдяным, воздушным и т. д.

Электрическая емкость конденсатора определяется отношением величины заряда на его пластинах к напряжению между ними. Сле­довательно, электрическая емкость

Электрическая емкость измеряется в фарадах. Емкость конден­сатора равна одной фараде, если увеличение его заряда на один кулон электричества вызывает повышение напряжения между его об­кладками на один вольт.

Фарада — очень крупная единица емкости, которая практиче­ски не применяется. Обычно пользуются более мелкими единица­ми емкости: микрофарадой (мкф) и пикофарадой (пф).

Фарада содержит миллион микрофарад: 1ф=106 мкф. Микро­фарада содержит миллион пикофарад: 1 мкф=106 пф.

Емкость конденсатора зависит от площади его пластин. При одном и том же напряжении и одинаковом расстоянии между пластинами конденсатор, у которого пластины имеют большую пло­щадь, заряжается большим количеством электричества и в связи с этим обладает большей емкостью, чем такой же конденсатор с тем же диэлектриком, но с пластинами малого размера.

Емкость конденсатора зависит от расстояния между его пласти­нами (от толщины диэлектрика). Конденсатор, у которого пласти­ны находятся на большом расстоянии друг от друга, обладает мень­шей емкостью, чем такой же конденсатор, пластины которого сбли­жены. Это объясняется тем, что при малом расстоянии между пла­стинами взаимодействие их разноименных зарядов сильнее, а потому конденсатор накапливает большее количество электричества.

Емкость конденсатора зависит от свойств материала диэлектри­ка—от его диэлектрической проницаемости. Например, при рав­ных размерах пластин и равном расстоянии между ними конденсатор, у которого диэлектриком является слюда, имеет примерно в шесть раз большую емкость, чем конденсатор с воздушным ди­электриком. При тех же условиях бумажный конденсатор имеет в 2,2 раза большую емкость, чем воздушный, но меньшую, чем слюдяной.

I    Для вычисления емкости плоского конденсатора, имеющего две пластины, служит формула

42 билет

Электрическим током называют упорядоченное движение заряженных частиц или заряженных макроскопических тел. Различают два вида электрических токов – токи проводимости и конвекционные токи.     

     Током проводимости называют упорядоченное движение в веществе или вакууме свободных заряженных частиц – электронов проводимости (в металлах), положительных и отрицательных ионов (в электролитах), электронов и положительных ионов (в газах), электронов проводимости и дырок (в полупроводниках), пучков электронов (в вакууме). Этот ток обусловлен тем, что в проводнике под действием приложенного электрического поля напряженностью  происходит перемещение свободных электрических зарядов (рис. 2.1, а).      Конвекционным электрическим током называют ток, обусловленный перемещением в пространстве заряженного макроскопического тела (рис. 2.1, б).      Для возникновения и поддержания электрического тока проводимости необходимы следующие условия:      1) наличие свободных носителей тока (свободных зарядов);      2) наличие электрического поля, создающего упорядоченное движение свободных зарядов;      3) на свободные заряды, помимо кулоновских сил, должны действовать сторонние силы неэлектрической природы; эти силы создаются различными источниками тока(гальваническими элементами, аккумуляторами, электрическими генераторами и др.);      4) цепь электрического тока должна быть замкнутой.      За направление электрического тока условно принимают направление движения положительных зарядов, образующих этот ток.      Количественной мерой электрического тока является сила тока I - скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение S проводника в единицу времени:     

      (2.1)

     Ток, сила и направление которого не изменяются с течением времени, называетсяпостоянным  (рис. 2.2, а). Для постоянного тока     

     

     Электрический ток, изменяющийся с течением времени, называется переменным. Примером такого тока является синусоидальный электрический ток, применяемый в электротехнике и электроэнергетике  (рис. 2.2, б).      Единица силы тока – ампер (А). В СИ определение единицы силы тока формулируется следующим образом: 1 А – это сила такого постоянного тока, который при протекании по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, создает между этими проводниками силу, равную на каждый метр длины.      Для характеристики направления электрического тока проводимости в разных точках поверхности проводника и распределения силы тока по этой поверхности вводится плотность тока.      Плотностью тока  называют векторную физическую величину, совпадающую с направлением тока в рассматриваемой точке и численно равную отношению силы тока dI, проходящего через элементарную поверхность, перпендикулярной направлению тока, к площади этой поверхности:       

     (2.2)

      Единица плотности тока – ампер на квадратный метр (А/м2).      Плотность постоянного электрического тока одинакова по всему поперечному сечению однородного проводника. Поэтому для постоянного тока в однородном проводнике с площадью поперечного сечения S сила тока равна  

  Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение зарядов от точек с большим потенциалом к точкам с меньшим потенциалом. Это приводит к выравниванию потенциалов во всех точках цепи и к исчезновению тока. Поэтому для поддержания постоянного электрического тока в цепи необходимо наличие устройства, способного создавать и поддерживать разность потенциалов за счет работы некоторых сторонних сил. Такие устройства называют источниками тока.      Под действием сторонних сил носители тока движутся внутри источника электрической энергии против сил электростатического поля (против кулоновских сил, вызывающих соединение разноименных зарядов, а следовательно, выравнивание потенциалов и исчезновение тока), так что на концах внешней цепи поддерживается постоянная разность потенциалов и в цепи протекает постоянный электрический ток.      Сторонние силы совершают работу по перемещению электрических зарядов.Физическая величина, определяемая работой сторонних сил при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС) источника:                   (2.3) 

43 билет

ЭЛЕКТРОДВИЖУЩАЯ СИЛА

ЭЛЕКТРОДВИЖУЩАЯ СИЛА (эдс), величина, характеризующая источник энергии в электрической цепи, необходимый для поддержания в ней электрического тока. Эдс численно равна работе по перемещению единичного положительного заряда вдоль замкнутой цепи. Полная эдс в цепи постоянного тока равна разности потенциалов на концах разомкнутой цепи. Эдс индукции создается вихревым электрическим полем, порождаемым переменным магнитным полем. В СИ измеряется в вольтах.

44 билет

Как известно из курса школьной физики, есть две основные характеристики электрического тока – это сила тока I и плотность тока . В отличие от силы тока, которая есть величина скалярная и направления не имеет,плотность тока – это вектор. Связь между этими двумя физическими величинами такова:

 

(7.2.1)

 

      Модуль вектора плотности тока численно равен отношению силы тока через элементарную площадку, перпендикулярную направлению движения носителей заряда, к ее площади:

 

(7.2.1)

 

      Единица плотности тока А/м2. Плотность тока есть более подробная характеристика тока, чем сила тока I. Плотность тока характеризует ток локально, в каждой точке пространства, а I – это интегральная характеристика, привязанная не к точке, а к области пространства, в которой протекает ток.

      Ясно, что плотность тока связана с плотностью свободных зарядов ρ и с дрейфовой скоростью их движения :

 

.

(7.2.3)

 

      За направление вектора принимают направление вектораположительных носителей зарядов (раньше не знали о существовании отрицательных носителей зарядов и приняли так). Если носителями являются как положительные, так и отрицательные заряды, то плотность тока определяется формулой:

 

(7.2.4)

 

где и– объемные плотности соответствующих зарядов.

      Там где носители только электроны, плотность тока определяется выражением:

 

(7.2.5)

 

      Поле вектора можно изобразить графически с помощьюлиний тока, которые проводят так же, как и линии вектора напряженности (рис. 7.1).

Рис. 7.1

      Зная в каждой точке интересующей нас поверхностиS, можно найти силу тока через эту поверхность, как поток вектора :

 

 

 

      Сила тока является скалярной величиной и алгебраической. А знак определяется, кроме всего прочего, выбором направления нормали к поверхностиS.

45 билет

к Вы знаете, в нашем мире на любое действие есть своё противодействие. К примеру, на движущуюся машину будет действовать сила трения (об воздух, о поверхность дороги, трение внутренних частей и т.д.), при нагревании, какого либо предмета на него обязательно будет влиять более низкая температура окружающей среды, которая после прекращения нагревания, вернёт предмету прежнюю температуру. В сфере электричества подобное обратное влияние (по отношению к протеканию электрического тока) будет оказывать электрическое сопротивление.

 

Электрическое сопротивление проводника, это некоторая способность материалов (точнее, веществ из которых и сделан сам проводник) противодействовать движению заряженных частиц внутри этого проводника. Причём, следует заметить, что при этом противодействии происходит некоторое преобразование электрической энергии в иной её вид (в основном, электроэнергия преобразуется в тепло).

 

Электрическое сопротивление имеет свою единицу измерения под названием «Ом». 1 Ом — это сопротивление, которое будет иметь столб ртути с высотой — 106,3 см; поперч. сеч. — 1 кв.мм. и температурой — 0 град. Сопротивление принято обозначать буквой — R или r. Название величин сопротивления: ОмкОм (1 килоом = 1000 Ом), мОм (1 мегаом = 1000 000 Ом).

Чтобы лучше понять суть сопротивления (как и из-за чего оно возникает) следует вспомнить школьные уроки химии и физики, на которых рассказывали о структуре веществ. Твёрдые вещества представляют собой множество атомов (молекул). Они крепко связаны между собой полями и образуют структуру в виде кристаллической решётки. Вокруг каждого атома (по его орбитам) вращаются электроны. Электроны, что расположены дальше всего от атома, способны отрываться и перелетать на соседние атомы. Такие электроны называются свободными и благодаря ним, материалы (проводники) могут проводить через себя электрический ток.

При подключении внешнего постоянного источника электропитания (электрического поля) свободные электроны упорядочено начинают перемещаться с одного конца проводника в другой. Если бы при их перемещении им ничего не мешало, то и про проводник можно сказать, что он имеет нулевое сопротивление (сверхпроводимостью обладают некоторые материалы при сверхнизких температурах = -273 град.). При нормальных же температурах электрические проводники имеют ряд препятствий для прохода электронов, откуда и возникает это самое электрическое сопротивление проводника.

Что порождает и влияет на электрическое сопротивление? Как ни странно, но, это сами атомы, так как они и мешают электронам на их пути. Электрону, что несётся на огромной скорости, постоянно приходится натыкаться на атомы, теряя при этом свою внутреннюю энергию, которая в свою очередь, превращается в тепло. Следовательно, чем длиннее путь (проводник), тем больше будет у него внутренее сопротивление. Чем больше сечение проводника, то наоборот, электрическое сопротивление его будет уменьшаться (большее электронов пройдёт через него).

Поскольку у различных материалов (веществ) различные структуры кристаллических решеток, следовательно, и сопротивление у них будет тоже разное. Это ещё называется удельным сопротивлением материала. То есть, удельное сопротивление, это определённое значение электрического сопротивления, которое в точности соответствует определённому материалу (проводнику), при длине в 1 метр и поперечным сечением в 1 кв.мм. Удельное сопротивление обозначается буквой «p». Ниже приведена таблица удельного сопротивления проводников.

 

Для расчёта электрического сопротивления определённой длины и сечения того или иного материала используют следующую формулу: R=p*L/S

 

R = электрическое сопротивление;

p = удельное сопротивление материала;

L = длина проводника;S = поперечное сечение проводника.

Следует (но не обязательно) учитывать, что значение температуры также влияет на общее электрическое сопротивление проводника. При нагревании проводника в нём происходит увеличение хаотического движения атомов вещества. Это в свою очередь затрудняет протекание электронов по этому проводнику, что и увеличивает общее сопротивление этого материала. При простом (особая точность не требуется) расчёте электрического сопротивления, обычно температура не берется в расчёт, так как её влияние незначительно. Приблизительное значение зависимости температуры на сопротивление: 0.4% на 1 град.

 

46 билет

Зако́н О́ма — физический закон, определяющий связьэлектродвижущей силы источника или электрическогонапряжения с силой тока исопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.

В своей оригинальной форме он был записан его автором в виде : ,

Здесь X — показаниягальванометра, т.е в современных обозначениях сила тока Ia — величина, характеризующая свойства источника тока, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС) l — величина, определяемая длиной соединяющих проводов, чему в современных представлениях соответствует сопротивление внешней цепи R и, наконец, bпараметр, характеризующий свойства всей установки, в котором сейчас можно усмотреть учёт внутреннего сопротивления источника тока r[1].

В таком случае в современных терминах и в соответствии с предложенной автором записи формулировка Ома (1) выражает

Закон Ома для полной цепи:

, (2)

где:

  •  — ЭДС источника напряжения(В),

  •  — сила тока в цепи (А),

  •  — сопротивление всех внешних элементов цепи (Ом),

  •  — внутреннее сопротивление источника напряжения (Ом).

Из закона Ома для полной цепи вытекают следствия:

  • При r<<R сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения

  • При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.

Часто[2] выражение:

 (3)

(где есть напряжение или падение напряжения, или, что то же,разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».

Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:

 (4)

То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.

К другой записи формулы (3), а именно:

 (5)

Применима другая формулировка:

Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Выражение (5) можно переписать в виде:

 (6)

где коэффициент пропорциональности G назван проводимость илиэлектропроводность. Изначально единицей измерения проводимости был «обратный Ом» — Mо[3], впоследствии переименованный в Си́менс (обозначение: СмS).

Содержание

  [убрать

  • 1 Мнемоническая диаграмма для Закона

    • 1.1 Закон Ома и ЛЭП

  • 2 Закон Ома в дифференциальной форме

  • 3 Закон Ома для переменного тока

  • 4 Трактовка закона Ома

  • 5 См. также

  • 6 Примечания

  • 7 Ссылки

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]