Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Gigiena_Bardov_1 / Тема № 66

.doc
Скачиваний:
64
Добавлен:
10.02.2016
Размер:
395.26 Кб
Скачать

Оценка экспозиции – этап оценки риска, заключающийся в определении: какими путями, через какие компоненты окружающей среды, на каком количественном уровне (выраженном как концентрация в этом компоненте и/или как доза), в какое время, с какой периодичностью и общей продолжительностью происходит реальное или ожидаемое влияние конкретного вредного фактора на человеческую популяцию или ее часть с учетом ее численности.

Оценка зависимости „доза (концентрация) – ответ” – этап оценки риска, который состоит в установлении или прогнозировании связи между дозой или концентрацией вредного фактора и относительным числом индивидуумов с количественно определенным проявлением качественно определенного неблагоприятного эффекта.

Характеристика риска – завершающий этап оценки риска, на котором синтезируются данные предыдущих трех этапов с целью обоснования выводов в количественной, полуколичественной или описательной форме, которые должны быть переданы лицу или организации, принимающим решения в сфере экологической политики и управления здоровьем населения, или же субъекту хозяйственной деятельности, по заказу которого проводилась оценка риска.

Неопределенность – ориентировочная оценка границ, в пределах которых может находиться предвиденное истинное значение количественных параметров, использующихся на разных этапах оценки риска, а тем самым – и его завершающая характеристика. Однако часто указываются только причины неопределенности и ожидаемый уровень их влияния на итоговую оценку риска.

Управление риском (risk management) - система политических, технических, административных, законодательных и нормативных решений, направленных на ликвидацию или существенное уменьшение риска для здоровья населения, которые принимаются на основе результатов оценки риска с учетом ранжирования его источников, сравнительной опасности (для индивидуума и для населения в целом) возможных неблагоприятных эффектов, численности популяций, подвергающихся риску, а также всех тех факторов политики, экономики и общественного сознания, которые влияют на принятие решений в заданных условиях места и времени. Разработка разных сценариев управления риском допускает выбор тех, которые могут дать наибольший эффект при наименьших затратах и/или наибольшей реализованности.

Информация о риске (risk communication) заключается в ответственности эксперта или экспертного учреждения, проводящих оценку риска, за передачу развернутых результатов этой оценки лицам (органам), которые принимают решение, достоверном информировании о них общественных природоохранных движений и организаций, а также населения (через средства массовой информации), которым одновременно предлагаются те или другие варианты управления риском.

В эпидемиологических исследованиях по изучению здоровья чаще всего используются следующие понятия: относительный риск, атрибутивный риск, атрибутивный популяционный риск и популяционная фракция атрибутивного риска.

Относительный риск - отношение риска возникновения болезни или смерти среди тех, на кого действовали различные факторы к, риску среди неэкспонированных. Величина относительного риска позволяет измерить патогенную силу условий, с которыми ассоциируется фактор риска. Вместе с тем, она не дает представления относительно абсолютной величины распространенности заболеваний. С этой целью используется атрибутивный риск.

Атрибутивный риск – количество заболеваний или других патологических состояний, которые можно связать с действием фактора. Он рассчитывается путем вычитания количества патологических состояний, зафиксированных в контрольной группе от количества нарушений в опытной группе. В отличие от относительного риска, который измеряет силу отрицательного воздействия, атрибутивный риск измеряет его последствия, которые можно выразить количеством лиц, заболевших за определенный период в конкретной группе населения.

Относительный и атрибутивный риски разрешают сравнивать между собой вероятность заболевания в группах населения с наличием или отсутствием факторов риска. В то же время они не дают представления о патогенном значении фактора для популяции в целом. С этой целью используют показатель атрибутивного популяционного риска. Он рассчитывается путем произведения

2 - І1) ∙ р,

где (І2 - І1) - атрибутивный риск,

Р - количество лиц в популяции с конкретным фактором риска.

Популяционный атрибутивный риск (синонимы – популяционная фракция атрибутивного риска, атрибутивная популяционная фракция или этиологическая популяционная фракция) – это болезнь или другое патологическое состояние, ассоциирующиеся с действием фактора риска. Для оценки в популяции удельного веса заболеваний, связанных с конкретным фактором риска, используется популяционная фракция атрибутивного риска. Она рассчитывается как отношение популяционного атрибутивного риска к общему числу людей, заболевших данным заболеванием в конкретной популяции за аналогичный период времени. Его часто выражают в процентах и рассчитывают как:

где

P – риск (в %),

Пэ - число экспонированных, т.е. испытавших влияние фактора риска;

Пt - число лиц в популяции;

Зэ - заболеваемость среди экспонированных;

Зn - заболеваемость среди неэкспонированных;

Зt - общая заболеваемость в популяции.

Общее описание методологии оценки риска

В развернутом виде она осуществляется в 4 этапа:

  • идентификация источника опасности (вредного фактора);

  • оценка экспозиции,

  • оценка зависимости „доза - ответ”,

  • характеристика риска.

Попытки игнорирования определенных этапов, как правило, приводят ко многим осложнениям. Поэтому считается, что методологической основой анализа риска в медико-экологических исследованиях является первый закон гигиены.

Связь между перечисленными этапами может быть как прямой, так и обратной, хотя каждый из них коротко описывается как определенная последовательность действий, выполняемых в соответствии с установленным алгоритмом. Следует отметить, что,

  • во-первых, исходная методология US EPA по своей сути является рекомендательной, а не обязательной как в целом, так и в отдельных деталях;

  • во-вторых, отличительной особенностью этой методологии является ее гибкость, возможность адаптации к конкретным задачам, к новой информации, возможность выбора между альтернативными подходами к оценке и т.п.;

  • в-третьих, даже руководящие материалы US EPA по оценке риска периодически пересматриваются в связи с накопленным опытом и/или изменением взглядов специалистов этого Агентства.

Важнейшей задачей является овладение не только общей схемой оценки риска, но и заложенными в этой методологии возможностями творческого подхода.

Идентификация вредного фактора (факторов)

Первым шагом анализа риска является выявление наиболее серьезных источников опасности (факторов риска) и их ранжирование с целью определения реальной угрозы для человека и окружающей среды на основе построения карт риска; определение порогов устойчивости технических и экологических систем; использование методов математической статистики.

Как вытекает из приведенного выше определения, на этапе идентификации должна быть дана качественная оценка неблагоприятных для здоровья эффектов какого-то фактора (или факторов) у людей или животных.

Например, если установлено, что соединения свинца могут вызвать нарушение синтеза гемоглобина и поражение периферических нервов, вегетативной и центральной нервной системы, вызвать задержку психического развития у детей, подавлять женскую репродуктивную функцию и т.п., то свинец может быть идентифицирован как вредный для здоровья фактор. В этом примере идентификация опирается не только на экспериментальную, но и на большую клиническую и эпидемиологическую базу. Однако нередко идентификация вредного фактора основывается только на данных экспериментальной токсикологии. Если необходимой информации в доступных базах или в известной литературе нет, то такая идентификация требует проведения специальных токсикологических исследований. Как всякое такое исследование, оно связано с предшествующим изучением химических и физических свойств вещества и, в частности, его реакционной способности. Таким образом, этап идентификации опирается на теоретическую, экспериментальную и клиническую базу.

Важность этого этапа заключается в том, что только на его основе можно определить те эффекты вредного влияния на организм, в отношении к которым в дальнейшем будет оцениваться зависимость „доза - ответ” и формироваться окончательная характеристика риска. Вместе с тем, как правило, ставится задача выбрать из этих эффектов лимитирующие - тот или те, по которым оценка риска является наиболее актуальной, не только с учетом степени тяжести и/или индивидуальной и социальной значимости эффектов, но и того, который возможен при наиболее низких уровнях экспозиции. Другими словами, к решению этой важной задачи идентификации, которая требует учета как качественных, так и количественных характеристик, приходится возвращаться после анализа зависимостей „доза - ответ”. Например, для того же свинца, исходя из этих критериев, критическим эффектом является снижение интеллектуального уровня и поведенческие отклонения от нормы у детей младшего возраста, для кадмия - поражение почечных канальцев.

С другой стороны, только при общем анализе токсикологической характеристики веществ и оцененных (на следующем этапе работы) уровней экспозиции может быть решена еще одна задача идентификации, а именно формирование короткого списка тех реальных для данной территории загрязнителей, для которых вообще имеет смысл переходить к этапу анализа зависимостей „доза - ответ” (самого сложного и требующего наиболее высокой квалификации эксперта). Обычная практика американских экспертов заключается в проведении полной оценки риска для всех зарегистрированных загрязнителей конкретной территории с их последующим ранжированием. Однако отечественные токсикологи считают, что эта практика не пригодна для условий России и Украины. Следует учитывать, что оценка риска необходима, прежде всего, в высоко индустриализованных зонах, где выбросы, стоки и отходы множества предприятий загрязняют окружающую среду десятками, а иногда и сотнями разных вредных веществ. В наших странах сегодня еще тяжело обеспечить адекватное качество оценки риска в широких масштабах. С другой стороны, для большей части этих загрязнителей существует система гигиенических нормативов (ПДК, ОБУВ). Поэтому в конкретных условиях те загрязнители, концентрации которых значительно ниже этих нормативов, могут быть исключены из дальнейшего рассмотрения, как не представляющие риска. В этой ситуации целесообразно сконцентрировать внимание, имеющиеся знания и возможные затраты на тех загрязнителях окружающей среды, которые представляют определенную опасность для здоровья населения и именно для них давать оценку риска (со следующим сравнением этих рисков).

Например, в России для оценки риска в промышленных городах Свердловской области были предложены следующие критерии отбора приоритетных загрязнителей („короткого списка”):

  • Превышение средних концентраций вредного вещества соответствующей ПДК (а для веществ однонаправленного действия - отношение суммы их концентраций к соответствующим ПДК, превышающее 1,0) хотя бы в одном компоненте среды.

  • Содержание вредного вещества на уровне, соизмеримом с соответствующими ПДК более чем в одном компоненте окружающей среды, если загрязнение почвы превышает фоновое и имеет место загрязнение продуктов питания местного производства. Как такие, что «не превышают», но „соизмеримы с ПДК” условно принимаются те концентрации, которые укладываются в диапазон 0,1-1,0 ПДК.

  • Особенно неблагоприятный характер предвиденного вредного эффекта вещества (канцерогенность, влияние на репродуктивную функцию и/или на потомство, влияние на развитие нервной системы у детей).

К регионально приоритетным относятся те загрязнители окружающей среды, которые присутствуют в „коротких списках” не менее чем двух городов (территорий) региона. Внутри регионального „короткого списка” загрязнители ранжируются в зависимости от общей численности населения на этих территориях.

Представление о том, насколько сокращается объем работы на основе предложенного подхода, может дать пример города Верхняя Пишма (Свердловская область), в котором окружающая среда загрязняется 29 учтенными (за которыми осуществляется мониторинг) веществами. Как такие, что требуют оценки риска, здесь были отобраны только 9, из них: по критерию А - взвешенные частички, сернистый ангидрид, диоксид азота, аммиак; по критерию В - бенз(а)пирен; по критериям А и Б - медь; по критериям А, Б и В - свинец, мышьяк, кадмий.

Оценка экспозиций

На этом этапе должна быть дана оценка того, какими путями и через какую среду, на каком количественном уровне, в какое время и какой продолжительности будет реальное или ожидаемое вредное воздействие, а также оценка численности популяции, которая испытает или может испытать такое влияние.

Если по материалам мониторинга получены данные для оценки так называемого многосредового риска, связанного с загрязнением разных компонентов среды одним веществом и с разными путями экспозиции (например, ингаляционным, пероральным, через кожу), то для его оценки нужно определить суммарную дозу этого вещества, получаемую всеми путями (как минимум теми, о которых есть достаточная информация). Для этого необходимо произвести расчет дозы, полученной каждым путем отдельно. Кроме того, в некоторых случаях разные пути экспозиции ведут к поражению разных органов-мишеней, и полученные таким способом дозы должны рассматриваться отдельно. Если же возможна оценка риска от загрязнения только одного компонента среды (чаще всего воздуха), то расчет дозы вносит лишь дополнительные неопределенности в оценку уровня экспозиции, которая вполне может быть выражена в единицах концентрации загрязнителя в этом компоненте.

На рассмотренном этапе оценивается не только уровень экспозиции (т.е. концентрации вещества в среде), но и фактор времени. Именно это дает возможность опосредованно получить представление о получаемой дозе, даже если она не может быть определена непосредственно (например, с помощью химического анализа крови или других биосред). Для оценки риска, не связанного с профессией, доза рассчитывается на период жизни продолжительностью 70 лет (или для конкретного отрезка времени, например, для периода детства) как среднесуточная на 1 кг массы тела. Например, для среднесуточной дозы (ССД), получаемой ингаляционным или пероральным путем, расчет осуществляется по формуле:

ССД = (Кср х ОП х ПЭ] : (МТ х ПУ], где:

Кср – средняя (арифметическая) концентрация токсичного вещества в соответствующем компоненте среды;

ОП – объем потребления этого компонента (в тех же единицах объема или массы, к которым отнесена концентрация);

МТ – масса тела;

ПЭ и ПУ – соответственно суммарный период экспозиции и период усреднения (в днях).

Для расчета среднесуточной дозы за жизнь период усреднения равняется продолжительности жизни. Для этого показателя и многих других параметров экспозиции, которые учитываются при расчете дозы (в частности, для объема вдыхаемого воздуха, потребления воды, пищевых продуктов), методология US EPA предусматривает определение двух оценочных величин, одна из которых называется „центральная тенденция”, а другая - „верхняя оценка”.

„центральная тенденция” рассчитывается на основе средних или медианных интенсивностей экспозиции и усредненных оценок ее частоты, продолжительности, некоторых физиологических параметров (например, объема дыхания или потребления воды).

„верхняя оценка” (точнее „верхняя граница” - the upper bound) отвечает верхней границе 95% доверительного интервала интенсивности экспозиции (например, концентрации токсичного вещества в воздухе), а для используемых физиологических параметров и продолжительности экспозиции - значением 90-го или 95-го перцентиля. При наличии достаточной информации распределение экспозиции может быть оценено и с помощью других математических моделей (например, так называемой статистики Монте-Карло).

Экспозиция, которая отвечает „центральной тенденции”, используется для оценки усредненного риска, который испытает население, а экспозиция, отвечающая „верхней оценке”, рассматривается как основа прогноза наиболее возможного риска для отдельных членов этой популяции. Вместе с тем, если есть основания ожидать существенных расхождений и по „центральной тенденции” экспозиции между отдельными группами населения (субпопуляциями), то она рассчитывается для таких групп отдельно. Наиболее типичный пример этого - раздельная оценка экспозиции для детей и взрослых, для которых расхождения доз могут быть связаны с более высоким потреблением воздуха, воды и пищи в расчете на единицу массы тела, с отличием рационов питания, и, особенно, с высоким значением для детей дошкольного и младшего школьного возраста перорального пути экспозиции через руки, загрязненные почвой, которая содержит осевшие из воздуха токсичные вещества, или в связи с извращенными пищевыми вкусами (поедание почвы, снега, выкрашенной штукатурки и т.п.).

Численность экспонированной популяции не входит в расчет дозы, но является одним из важнейших факторов для решения вопроса о приоритетности природоохранных мероприятий, который возникает при использовании результатов оценки риска с целью „управления риском”. Важной и непростой проблемой оказывается правомерность отнесения экспозиции (рассчитанной по данным мониторинга загрязнения, как правило, ограниченного количества точек) к более или менее широкой зоне, а тем самым - к определенной популяции. Важным фактором неопределенности может оказаться миграция населения (в частности, то, что значительная часть молодежи оставляет малые города), что приводит к фактическому сокращению продолжительности экспозиции.

В идеальном варианте оценка экспозиции действительно опирается на фактические данные мониторинга загрязнения разных компонентов окружающей среды (атмосферный воздух, воздух помещений, почва, питьевая вода, продукты питания). Следует отметить, что часто этот подход нельзя применять в связи с большими затратами. Кроме того, он не позволяет оценить связь загрязнения с конкретным источником (необходимое условие, если в рассматриваемом городе один и тот же загрязнитель выбрасывается из разных источников, а ставится вопрос об оценке риска, создаваемом только одним из них) и является недостаточным для прогнозирования будущей экспозиции, если данные реального мониторинга еще не могут быть получены. Поэтому во многих случаях используются разные математические модели рассеивания атмосферных выбросов, их оседания на почве, диффузии и разведения загрязнителей в грунтовых водах и/или открытых водоемах. Серьезной проблемой является не только выбор наиболее адекватной модели, но и надежность инвентаризации промышленных выбросов в атмосферу и промышленных стоков, что является исходной информацией для модельных расчетов концентраций вредных веществ в воздухе и воде.

Сегодня наблюдается нехватка моделей для расчета вредной экспозиции из атмосферы через почву (или прямо через продукты растениеводства и животноводства), как и вообще универсальных и надежных для использования миграционных моделей. Вместе с тем, даже такая неполная оценка экспозиции (и тем самым риска) может принести пользу.

Иногда используют также биокинетические математические модели, которые дают возможность оценить накопление токсичного вещества в организме человека (например, концентрации свинца в крови детей разного возраста) с учетом всех путей поступления.

Оценка зависимости „доза - ответ”

На этом этапе оценки риска осуществляется поиск количественных закономерностей, которые связывают получаемую дозу вещества с распространенностью того или другого неблагоприятного для здоровья эффекта, т.е. с вероятностью его развития. Словарь US EPA по оценке риска определяет термин зависимость „доза - ответ” как „связь между дозой и относительным количеством (в процентах) индивидуумов с количественно определенным проявлением конкретного эффекта в группе индивидуумов”. В тех случаях, когда проводится оценка риска, обусловленного только загрязнением атмосферы, данный этап сводится к оценке зависимости „концентрация - ответ”. В принципе этот же подход целиком можно применить и к оценке риска только при загрязнении питьевой воды, хотя в этом случае принято переводить концентрацию загрязнителя в его дозу (с учетом питьевого водопотребления).

Закономерности „доза (концентрация) - ответ” чаще всего (особенно, когда речь идет о редко встречающихся или новых загрязнителях) наблюдаются в токсикологических экспериментах. Как известно, экстраполяция их из группы животных на человеческую популяцию связана с большим количеством неопределенностей. Зависимости „доза - ответ”, обоснованные эпидемиологическими данными, могут быть более надежными, но и они имеют свои источники неопределенности. Например, при построении некоторой эпидемиологической зависимости ответа от высоких уровней экспозиции (в основном производственной) ее экстраполяция на диапазон менее высоких уровней может оказаться ошибочной и зависеть от произвольного выбора математической модели. Имеющиеся данные о вариабельности экспозиции внутри изученной популяции и/или о разности экспозиций сравниваемых популяций часто оказываются недостаточными. Другими словами, определенный ответ - например, частота случаев рака, связывающаяся с усредненной оценкой экспозиции данной популяции, может быть обусловлена в основном той ее частью, которая испытала более высокую экспозицию, оставшуюся неизвестной исследователю. Зависимость, найденная для одной человеческой популяции, не обязательно подходит для другой, имеющей какие-то генетические или другие отличия и испытывающей влияние другого комплекса факторов, которые сопровождают исследуемую экспозицию, и т.п.

Тем не менее эпидемиологическое обоснование зависимости „доза - ответ” (особенно с использованием результатов матанализа нескольких эпидемиологических исследований) обоснованно признается более надежным, чем экспериментальное. Кроме того, для системных токсикантов только оно позволяет выражать „ответ” как явный вероятностный показатель риска для человека.

Эпидемиологические исследования, которые разрешают количественно соотнести „ответ” с экспозицией, даже в последнее десятилетие, характеризующееся интенсивным развитием так называемой экологической эпидемиологии (environmental epidemiology), проводятся не слишком часто в связи с организационными и финансовыми трудностями. Кроме того, во многих случаях такое исследование невозможно из-за недостаточно продолжительного периода экспозиции, малой численности экспонированной популяции, наличия слишком большого количества сопутствующих факторов риска, которые мешают эпидемиологическому анализу. Поэтому, как и в отечественной практике установления ПДК, в большинстве случаев рассмотренный этап оценки риска базируется на экспериментальных данных.

На этом этапе возникают проблемы с определением поглощенной дозы и ее индикаторов, т.е. биологических маркеров. В 1987 году Комитет по биологическим маркерам Национального научно-исследовательского Совета США определил биологические маркеры как индикаторы явлений или условий в биологических системах. Определение таких индикаторов входит в задачи специалистов занимающихся биомониторингом. Биологические маркеры могут быть индикаторами действия, эффекта или чувствительности.

Маркеры действия - это ксенобиотики или их метаболиты, большинство из которых концентрируются в моче, крови и других тканях, включая волосы и зубы.

Маркеры эффекта измеряют повреждение на уровне клеток или молекулы. Например, показатели нарушения функций мембран. Маркеры эффекта, в первую очередь, следует искать в органах и системах в зависимости от механизма действия ксенобиотика. Так, маркеры нефротоксичности используются для выявления групп риска при действии тяжелых металлов.

Маркеры чувствительности или склонности могут действовать на всех этапах развития повреждения после влияния фактора. Они связаны с генетически детерминированными особенностями метаболизма химических веществ.

Этап оценки зависимости „доза - ответ” в методологии US EPA разный для неканцерогенов и канцерогенов.

Для неканцерогенных токсичных веществ US EPA выходит из концепции пороговости действия и признает возможным установить так называемую референтную дозу (RfD) или референтную концентрацию (RfС), при действии которых на человеческую популяцию, включая ее чувствительные подгруппы, не создается риска развития любых вредных эффектов на протяжении всего периода жизни.

Термин „reference dose” означает „доза для ориентирования”, „информационная доза” и прямо не подтверждает безопасность этой дозы. В русском и украинском языках повседневное употребление слова „референт” никак не соотносится с термином „референтная доза”. Хотя „референтная доза” уже успела войти в профессиональный лексикон узкого круга лиц, которые занимаются оценкой риска в России, и даже в некоторые документы. Не следует также употреблять в этом контексте термин „допустимая доза или концентрация”, поскольку в России и Украине они имеют вполне определенное юридическое содержание. Наиболее адекватный термин „tolerable intake” („переносимая доза”), используемый в документах ВООЗ, излагающих эту же методологию оценки риска.

RfD обычно выражается в мг/кг/день, RfС - в мг/м3.

Анализ имеющейся экспериментально-токсикологической информации о зависимости ответа от дозы сводится к определению наивысшего уровня дозы (экспозиции), при котором еще может быть довольно убедительно, с точки зрения эксперта по оценке риска, показано отсутствие статистически и биологически значимых вредных эффектов. Этот уровень называется NOAEL (no observed adverse effect level - уровень, при котором не наблюдаются неблагоприятные эффекты). В качестве критического (т.е. лимитирующего) эффекта принимается тот, по которому найдено наименьшее значение NOAEL. При отсутствии надежных данных для оценки этой величины может быть использован LOAEL (lowest observed adverse effect level) - минимальный уровень экспериментальной экспозиции, при которой еще наблюдался биологически и статистически значимый неблагоприятный эффект. Необходимо отметить, что в некоторых случаях LOAEL определяется на основе не экспериментальных, а „человеческих” данных (чаще всего относительно профессиональных экспозиций).

Соседние файлы в папке Gigiena_Bardov_1